Numerische Mathematik

, Volume 104, Issue 4, pp 561–572 | Cite as

Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo-type line search



In this paper, we are concerned with the conjugate gradient methods for solving unconstrained optimization problems. It is well-known that the direction generated by a conjugate gradient method may not be a descent direction of the objective function. In this paper, we take a little modification to the Fletcher–Reeves (FR) method such that the direction generated by the modified method provides a descent direction for the objective function. This property depends neither on the line search used, nor on the convexity of the objective function. Moreover, the modified method reduces to the standard FR method if line search is exact. Under mild conditions, we prove that the modified method with Armijo-type line search is globally convergent even if the objective function is nonconvex. We also present some numerical results to show the efficiency of the proposed method.

Mathematics Subject Classification (2000)

90C30 65K05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Baali M. (1985) Descent property and global convergence of the Fletcher–Reeves method with inexact line search. IMA J. Numer. Anal. 5, 121–124MATHMathSciNetGoogle Scholar
  2. 2.
    Andrei, N.: Scaled conjugate gradient algorithms for unconstrained optimization. Comput. Optim. Appl. (to apper)Google Scholar
  3. 3.
    Birgin E., Martínez J.M. (2001) A spectral conjugate gradient method for unconstrained optimization. Appl. Math. Optim. 43, 117–128MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bongartz K.E., Conn A.R., Gould N.I.M., Toint P.L. (1995) CUTE: constrained and unconstrained testing environments. ACM Trans. Math. Softw. 21, 123–160MATHCrossRefGoogle Scholar
  5. 5.
    Dai Y.H., Yuan Y. (1996) Convergence properties of the conjugate descent method. Adv. Math. 25, 552–562MATHMathSciNetGoogle Scholar
  6. 6.
    Dai Y.H., Yuan Y. (1996) Convergence properties of the Fletcher–Reeves method. IMA J. Numer. Anal. 16, 155–164MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Dai Y.H., Yuan Y. (2000) A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10, 177–182CrossRefGoogle Scholar
  8. 8.
    Dai, Y.H.: Some new properties of a nonlinear conjugate gradient method. Research report ICM-98-010, Insititute of Computational Mathematics and Scientific/Engineering Computing. Chinese Academy of Sciences, Beijing (1998)Google Scholar
  9. 9.
    Dixon L.C.W. (1970) Nonlinear optimization: a survey of the state of the art. In: Evans D.J. (eds) Software for Numerical Mathematics. Academic, New York, pp. 193–216Google Scholar
  10. 10.
    Dolan E.D., Moré J.J. (2002) Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Fletcher R. (1987) Practical Methods of Optimization, Unconstrained Optimization. vol. I. Wiley, New YorkGoogle Scholar
  12. 12.
    Fletcher R., Reeves C. (1964) Function minimization by conjugate gradients. J. Comput. 7, 149–154MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Gilbert J.C., Nocedal J. (1992) Global convergence properties of conjugate gradient methods for optimization. SIAM. J. Optim. 2, 21–42MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Grippo L., Lucidi S. (1997) A globally convergent version of the Polak–Ribiére gradient method. Math. Program. 78, 375–391MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Hager W.W., Zhang H. (2005) A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Hager W.W., Zhang H. (2006) A survey of nonlinear conjugate gradient methods. Pacific J. Optim. 2, 35–58MATHGoogle Scholar
  17. 17.
    Hestenes M.R., Stiefel E.L. (1952) Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. Sect. B. 49, 409–432MATHMathSciNetGoogle Scholar
  18. 18.
    Hu Y., Storey C. (1991) Global convergence results for conjugate gradient methods. J. Optim. Theory Appl. 71, 399–405MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Liu D.C., Nocedal J. (1989) On the limited memory BFGS method for large scale optimization methods. Math. Program. 45, 503–528MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu G., Han J., Yin H. (1995) Global convergence of the Fletcher–Reeves algorithm with inexact line search. Appl. Math. J. Chin. Univ. Ser. B. 10, 75–82MATHMathSciNetGoogle Scholar
  21. 21.
    Moré J.J., Garbow B.S., Hillstrome K.E. (1981) Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41MATHCrossRefGoogle Scholar
  22. 22.
    Moré J.J., Thuente D.J. (1994) Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286–307MATHCrossRefGoogle Scholar
  23. 23.
    Nocedal J. (1996) Conjugate gradient methods and nonlinear optimization. In: Adams L., Nazareth J.L. (eds.) Linear and Nonlinear Conjugate Gradient-Related Methods. SIAM, Philadelphia, pp. 9–23Google Scholar
  24. 24.
    Polak E. (1997) Optimization: Algorithms and Consistent Approximations. Springer, Berlin Heidelberg New YorkGoogle Scholar
  25. 25.
    Polak B., Ribiere G. (1969) Note surla convergence des méthodes de directions conjuguées. Rev. Francaise Imformat Recherche Opertionelle 16, 35–43MATHMathSciNetGoogle Scholar
  26. 26.
    Polyak B.T. (1969) The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9, 94–112CrossRefGoogle Scholar
  27. 27.
    Powell M.J.D. (1984) Nonconvex minimization calculations and the conjugate gradient method. In: Lecture Notes in Mathematics 1066, 121–141Google Scholar
  28. 28.
    Powell M.J.D. (1986) Convergence properties of algorithms for nonlinear optimization. SIAM Rev. 28, 487–500MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Raydan M. (1997) The Barzilain and Borwein gradient method for the large unconstrained minimization problem. SIAM J. Optim. 7, 26–33MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Sun J., Zhang J. (2001) Convergence of conjugate gradient methods without line search. Ann. Oper. Res. 103, 161–173MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Touati-Ahmed D., Storey C. (1990) Efficient hybrid conjugate gradient techniques. J. Optim. Theory Appl. 64, 379–397MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Zhang, L., Zhou, W.J., Li, D.H.: A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. (to appear)Google Scholar
  33. 33.
    Zoutendijk G. (1970) Nonlinear programming, computational methods. In: Abadie J. (eds) Integer and Nonlinear Programming. North-Holland, Amsterdam, pp. 37–86Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.College of Mathematics and Computational ScienceChangsha University of Science and TechnologyChangshaChina
  2. 2.College of Mathematics and EconometricsHunan UniversityChangshaChina

Personalised recommendations