Numerische Mathematik

, Volume 104, Issue 2, pp 129–150 | Cite as

Interpolation error estimates in W 1,p for degenerate Q 1 isoparametric elements

Article

Abstract

Optimal order error estimates in H 1, for the Q 1 isoparametric interpolation were obtained in Acosta and Durán (SIAM J Numer Anal37, 18–36, 1999) for a very general class of degenerate convex quadrilateral elements. In this work we show that the same conlusions are valid in W 1,p for 1≤ p < 3 and we give a counterexample for the case p  ≥  3, showing that the result cannot be generalized for more regular functions. Despite this fact, we show that optimal order error estimates are valid for any p  ≥  1, keeping the interior angles of the element bounded away from 0 and π, independently of the aspect ratio. We also show that the restriction on the maximum angle is sharp for p  ≥  3.

AMS Subject Classification

65N15 65N30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acosta G., Durán R.G. (1999). The maximum angle condition for mixed and nonconforming elements: Application to the Stokes equations. SIAM J. Numer. Anal. 37, 18–36CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Acosta G., Durán R.G. (2000). Error estimates for Q 1 isoparametric elements satisfying a weak angle condition. SIAM J. Numer. Anal. 38, 1073–1088CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Acosta G., Durán R.G. (2004). An optimal Poincaré inequality in L 1 for convex domains. Proc. Am. Math. Soc. 132, 195–202CrossRefMATHGoogle Scholar
  4. 4.
    Apel, T.: Anisotropic finite elements: local estimates and applications. Advances in numerical mathematics. B. G. Teubner, Stuttgart, Leipzig (1999)Google Scholar
  5. 5.
    Babuška I., Aziz A.K. (1976). On the angle condition in the finite element method. SIAM J. Numer. Anal. 13, 214–226CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Brenner S.C., Scott R.L.: The mathematical theory of finite element methods 2nd edn. Text in applied mathematics 15. Springer,Berlin Heidelberg Newyork (2002)Google Scholar
  7. 7.
    Ciarlet P.G., Raviart P.A. (1972). Interpolation theory over curved elements, with applications to finite elements methods. Comput. Methods Appl. Mech. Eng. 1, 217–249CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Jamet P. (1976). Estimations d’erreur pour des éléments finis droits presque dégénérés. RAIRO Anal. Numér. 10, 46-61MathSciNetGoogle Scholar
  9. 9.
    Jamet P. (1977). Estimation of the interpolation error for quadrilateral finite elements which can degenerate into triangles. SIAM J. Numer. Anal. 14, 925–930CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Ming P., Shi Z.C. (2002). Quadrilateral mesh revisited. Comput. Methods Appl. Mech. Eng. 191, 5671–5682CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Payne L. E., Weinberger H.F. (1960). An optimal Poincaré inequality for convex domains. Arch. Rat. Mech. Anal. 5, 286–292CrossRefGoogle Scholar
  12. 12.
    Verfürth R. (1999). Error estimates for some quasi-interpolation operator. AN Math. Model. Numer. Anal. 33, 695–713CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Zenisek A., Vanmaele M. (1995). The interpolation theorem for narrow quadrilateral isoparametric finite elements. Numer. Math. 72, 123–141CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Universidad Nacional De General SarmientoBuenos AiresArgentina

Personalised recommendations