Numerische Mathematik

, Volume 103, Issue 4, pp 515–537

Non-overlapping Domain Decomposition Method for a Nodal Finite Element Method

Article

Abstract

A new approach is proposed for constructing nonoverlapping domain decomposition procedures for solving a linear system related to a nodal finite element method. It applies to problems involving either positive semi-definite or complex indefinite local matrices. The main feature of the method is to preserve the continuity requirements on the unknowns and the finite element equations at the nodes shared by more than two subdomains and to suitably augment the local matrices. We prove that the corresponding algorithm can be seen as a converging iterative method for solving the finite element system and that it cannot break down. Each iteration is obtained by solving uncoupled local finite element systems posed in each subdomain and, in contrast to a strict domain decomposition method, is completed by solving a linear system whose unknowns are the degrees of freedom attached to the above special nodes.

Keywords

Domain Decomposition Local Matrice Domain Decomposition Method Krylov Subspace Method Domain Decomposition Algorithm
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

1. 1.
Bendali A., Boubendir Y. (2004) Méthode de décomposition de domaine et éléments finis nodaux pour la résolution de l’équation d’Helmholtz. C R Acad Sci Paris Ser I 339, 229–234
2. 2.
Bendali, A., Boubendir, Y., Fares, M. A FETI-like domain decomposition method for coupling finite elements and boundary elements in large-size scattering problems of acoustic scattering. Comput Struct (2005) to appearGoogle Scholar
3. 3.
Bjorstad P., Widlund O. (1986) Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J Num Anal 23, 1097–1120
4. 4.
Boubendir, Y. Techniques de Décomposition de Domaine et Méthodes d’Equations Intégrales. PhD Thesis, INSA of Toulouse 2002Google Scholar
5. 5.
Boubendir, Y., Bendali, A. Domain decomposition methods for solving scattering problems by a boundary element method. In: Debit, N., Garbey, M., Hoppe, R., Périaux, J., Keyes, K., Kuznetsov, Y., (eds.) Proceedings of the 13th international conference on domain decomposition methods in Lyon, France. Barcelona, CIMNE, pp 319–326, 2002Google Scholar
6. 6.
Boubendir Y., Bendali A., Fares M. (2005) Nonoverlapping domain decomposition method for a scattering problem. Preprint IMA, University of Minnesota, MinnesotaGoogle Scholar
7. 7.
Brenner S.C. (2003) Analysis of two-dimensional FETI-DP preconditioners by the standard additive Schwarz framework. Electro Trans Num Anal 16, 165–185
8. 8.
Brezzi F., Fortin M. (1991) Fixed and hybrid finite element methods. Springer, Berlin Heidelberg New YorkGoogle Scholar
9. 9.
Chazarain J., Piriou A. (1982) Introduction to the theory of partial differential equations. North-Holland Publishing Co., Amsterdam
10. 10.
Chen G., Zhou J. (1992) Boundary element methods. Academic, London
11. 11.
Collino F., Ghanemi S., Joly P. (2000) Domain decomposition method for harmonic wave propagation: a general presentation. Comput Methods Appl Mech Eng 184, 171–211
12. 12.
de la Bourdonnaye A., Farhat C., Macedo A., Magoules F., Roux F.-X. (1998) A non-overlapping domain decomposition method for the exterior Helmholtz problem. Contemp Math 218(2): 42–66Google Scholar
13. 13.
Després B. (1991). Domain decomposition method and the Helmholtz problem. In: Cohen G., Halpern L., Joly P. (eds). Mathematical and numerical aspects of wave propagation phenomena (Strasbourg, 1991). SIAM, Philadelphia, pp 44–52Google Scholar
14. 14.
Després, B. Méthodes de décomposition de domaine pour les problèmes de propagation d’ondes en régime harmonique. PhD Thesis, Université Paris IX Dauphine 1991Google Scholar
15. 15.
Després, B. Domain decomposition method and the Helmholtz equation. II. In: Second international conference on mathematical and numerical aspects of wave propagation, Neuwark, Delaware. Philadelphia: SIAM, pp 197–206, 1993Google Scholar
16. 16.
Farhat C., Lesoinne M., Le Tallec P., Pierson K., Rixen D. (2001) FETI-DP: a dual-primal unified FETI method – part i: A fastr alternative to the two-level FETI method. Int J Num Methods Eng 50, 1523–1544
17. 17.
Farhat C., Li J. (2005) An iterative domain decomposition method for the solution of a class of indefinite problems in computational sructural dynamics. Appl Num Math 54, 150–166
18. 18.
Farhat C., Macedo A., Lesoinne M. (2000) A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems. Num Math 85(2): 282–303
19. 19.
Farhat C., Macedo A., Lesoinne M., Roux F.-X., de La Bourdonnaye A. (2000) Two-level domain decomposition methods with lagrange multipliers for the fast iterative solution of acoustic scattering problems. Comput Methods Appl Mech Eng 184, 213–239
20. 20.
Farhat C., Macedo A., Lesoinne M., Roux F.-X., Magoules F., de la Bourdonnaye A. (2000) Two-level domain decomposition methods with lagrange multipliers for the fast iterative solution of acoustic scattering problems. Comput Methods Appl Mech Eng 184(2): 213–240
21. 21.
Farhat C., Roux F.-X. (1991) A method of finite element tearing and interconnecting and its parallel implementation algorithm. Int J Num Methods Eng 32, 1205–1227
22. 22.
Farhat C., Roux F.-X. (1992) An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems. SIAM J Sci Stat Comput 13, 379–392
23. 23.
Gander M.J., Magoules F., Nataf F. (2002) Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J Sci Comput 24, 38–60
24. 24.
Klawonn A., Widlund O.B. (2001) FETI and Neumann–Neumann iterative substructuring methods: connections and new results. Comm Pure Appl Math 54(1): 57–90
25. 25.
Klawonn A., Widlund O.B., Dryja M. (2002) Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM J Num Anal 40(1): 159–179
26. 26.
Leis R. (1986) Initial boundary value problems in mathematical physics. Wiley, Chichester
27. 27.
Lesoinne, M. A FETI-DP corner selection algorithm for three-dimensional problems. In: Herrera, I., Keyes, D., Widlund, O., Yates, R., (eds.) Domain decomposition methods in science and engineering, Mexico, 2003. National Autonomous University of Mexico (UNAM), Mexico City. Proceedings of the fourteenth international conference on domain decomposition methods, Cocoyoc, Mexico 2003Google Scholar
28. 28.
Lions, P.-L. On the Schwarz alternating method. III. In: Third international symposium on domain decomposition methods for partial differential equations, vol 22, No.4. SIAM, July/August 1989Google Scholar
29. 29.
Magoules F., Iványi P., Topping B.H.V. (2004) Non-overlapping Schwarz methods with optimized transmission conditions for the Helmholtz equations. Comput Methods App Mech Eng 193, 4797–4818
30. 30.
Magoules F., Roux F.-X., Salmon S. (2004) Optimal discrete transmission conditions for a non-overlapping domain decomposition method for the Helmholtz equation. SIAM J Sci Comput 25(5): 1497–1515
31. 31.
Mandel J. (1993) Balancing domain decomposition. Comm Num Methods Eng 9, 233–241
32. 32.
Mandel J., Dohrmann C.R. (2003) Convergence of a balancing domain decomposition by constraints and energy minimization. Num Linear Algebra Appl 10, 639–659
33. 33.
Mosco U. (1969) Convergence of convex sets and of solutions for a class of variational inequalities. Adv Math 3, 510–585
34. 34.
Schwartz L. (1966) Théorie des distributions. Hermann, Paris
35. 35.
Taylor M. (1996) Partial differential equations I, basic theory. Springer, Berlin Heidelberg New YorkGoogle Scholar 