Numerische Mathematik

, Volume 102, Issue 1, pp 67–92 | Cite as

Numerical solution of a heat diffusion problem by boundary element methods using the Laplace transform

Article

Abstract

This paper is concerned with a heat diffusion problem in a half-space which is motivated by the detection of material defects using thermal measurements. This problem is solved by inverting the Laplace transform with respect to time on a contour in the complex plane using an exponentially convergent quadrature rule. This leads to a finite number of time-independent problems, which can be solved in parallel using boundary integral equation methods. We provide a full numerical analysis of this scheme on compact time intervals. Our results are formulated in a way that they can easily be used for other diffusion problems in exterior or interior domains.

Mathematics Subject Classification (2000)

65N38 65M12 44A10 35K45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I. (eds.): Handbook of mathematical functions. Dover Pub., New York, 1972Google Scholar
  2. 2.
    Bamberger, A., Duong, T.H.: Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (i). Math. Meth. in the Appl. Sci 8, 405–435 (1986)Google Scholar
  3. 3.
    Bamberger, A., Duong, T.H.: Formulation variationnelle pour le calcul d'une onde acoustique par une surface rigide. Math. Meth. Appl. Sci. 8, 598–608 (1986)Google Scholar
  4. 4.
    Chapko, R., Kress, R.: Rothe's method for the heat equation and boundary integral equations. J. Int. Eqs. Appl. 9, 47–69 (1997)Google Scholar
  5. 5.
    Chen, G., Zhou, J.: Boundary element methods. Academic Press, London, 1992Google Scholar
  6. 6.
    Costabel, M.: Boundary integral operators for the heat equation. Int. Eqs. Oper. Theo. 13, 498–552 (1990)CrossRefGoogle Scholar
  7. 7.
    Faermann, B.: Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods. II. The three-dimensional case. Numer. Math. 92(3), 467–499 (2002)Google Scholar
  8. 8.
    Garrido, F., Salazar, A.: Thermal wave scattering by spheres. J. Appl. Phys 95, 140–149 (2004)CrossRefGoogle Scholar
  9. 9.
    Hsiao, G., Saranen, J.: Boundary integral solution of the two dimensional heat equation. Math. Methods Appl. Sci 16, 87–114 (1993)CrossRefGoogle Scholar
  10. 10.
    Kress, R.: Linear integral equations, Applied Mathematical Sciences, vol. 82, second edn. Springer-Verlag, New York, 1999Google Scholar
  11. 11.
    Kress, R., Roach, G.F.: Transmission problems for the Helmholtz equation. J. Mathematical Phys. 19(6), 1433–1437 (1978)CrossRefGoogle Scholar
  12. 12.
    López-Fernández, M., Palencia, C.: On the numerical inversion of the Laplace transform of certain holomorphic mappings. PrePrint, Universidad de Valladolid (Spain)Google Scholar
  13. 13.
    Lubich, C., Schneider, R.: Time discretizations of parabolic boundary integral equations. Numer. Math. 63, 455–481 (1992)CrossRefGoogle Scholar
  14. 14.
    McLean, W.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge, 2000Google Scholar
  15. 15.
    Ocariz, A., Sánchez-Lavega, A., Salazar, A.: Photothermal study of subsurface cylindrical structures. 2. experimental results. J. Appl. Phys 81, 7561–7566 (1997)Google Scholar
  16. 16.
    Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Springer Verlag, New York, 1983Google Scholar
  17. 17.
    Prössdorf, S., Silbermann, B.: Numerical analysis for integral and related operator equations, Operator Theory: Advances and Applications, vol. 52. Birkhäuser Verlag, Basel, 1991Google Scholar
  18. 18.
    Rapún, M.L., Sayas, F.J.: Boundary integral approximation of a heat–diffusion problem in time harmonic regime. SubmittedGoogle Scholar
  19. 19.
    Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time-discretization of parabolic equations based on contour integral representation and quadrature. Math. Comp. 38, 177–195 (1999)Google Scholar
  20. 20.
    Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. IMA J Numer. Anal. 23, 1–31 (2003)CrossRefGoogle Scholar
  21. 21.
    Talbot, A.: The accurate numerical inversion of the Laplace transform. J. Inst. Maths Applics 23, 97–120 (1979)Google Scholar
  22. 22.
    Terrón, J.M., Salazar, A., Sánchez-Lavega, A.: General solution for the thermal wave scattering in fiber composites. J. Appl. Phys 91, 1087–1098 (2002)CrossRefGoogle Scholar
  23. 23.
    Xu, J., Zikatanov, L.: Some observations on Babuška and Brezzi theories. Numer. Math. 94(1), 195–202 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Institut für Numerische und Angewandte MathematikUniversität GöttingenGöttingenGermany
  2. 2.Deparmento di Matemática Aplicada, C.P.S.Universidad de ZaragozaZaragozaSpain

Personalised recommendations