Numerische Mathematik

, Volume 101, Issue 2, pp 221–249 | Cite as

Hybrid cross approximation of integral operators

Article

Abstract

The efficient treatment of dense matrices arising, e.g., from the finite element discretisation of integral operators requires special compression techniques. In this article we use the Open image in new window-matrix representation that approximates the dense stiffness matrix in admissible blocks (corresponding to subdomains where the underlying kernel function is smooth) by low-rank matrices. The low-rank matrices are assembled by a new hybrid algorithm (HCA) that has the same proven convergence as standard interpolation but also the same efficiency as the (heuristic) adaptive cross approximation (ACA).

Mathematics Subject Classification (2000)

45B05 65N38 68P05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)Google Scholar
  2. 2.
    Bebendorf, M., Rjasanov, S.: Adaptive Low-Rank Approximation of Collocation Matrices. Computing 70(1), 1–24 (2003)CrossRefGoogle Scholar
  3. 3.
    Börm, S.: Approximation of integral operators by Open image in new window-matrices with adaptive bases. Preprint 18, Max Planck Institute for Mathematics in the Sciences, 2004. To appear in ComputingGoogle Scholar
  4. 4.
    Börm, S., Grasedyck, L.: HLib – a library for Open image in new window- and Open image in new window-matrices, 1999. Available at http://www.hlib.org/
  5. 5.
    Börm, S., Grasedyck, L.: Low-rank approximation of integral operators by interpolation. Computing 72, 325–332 (2004)Google Scholar
  6. 6.
    Börm, S., Grasedyck, L., Hackbusch, W.: Introduction to hierarchical matrices with applications. Engineering Analysis with Boundary Elements 27, 405–422 (2003)CrossRefGoogle Scholar
  7. 7.
    Börm, S., Hackbusch, W.: Data-sparse approximation by adaptive Open image in new window-matrices. Computing 69, 1–35 (2002)CrossRefGoogle Scholar
  8. 8.
    Börm, S., Hackbusch, W.: Open image in new window-matrix approximation of integral operators by interpolation. Applied Numerical Mathematics 43, 129–143 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Dahmen, W., Schneider, R.: Wavelets on manifolds I: Construction and domain decomposition. SIAM Journal of Mathematical Analysis 31, 184–230 (1999)CrossRefGoogle Scholar
  10. 10.
    Ronald A. DeVore, George G. Lorentz.: Constructive Approximation. Springer-Verlag, 1993Google Scholar
  11. 11.
    Ford, J.M., Tyrtyshnikov, E.E.: Combining kronecker product approximation with discrete wavelet transforms to solve dense, function-related linear systems. SIAM J. Sci. Comput. 25(3), 961–981 (2003)CrossRefGoogle Scholar
  12. 12.
    Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L.: A theory of pseudoskeleton approximations. Lin. Alg. Appl. 261, 1–22 (1997)Google Scholar
  13. 13.
    Grasedyck, L.: Theorie und Anwendungen Hierarchischer Matrizen. Doctoral thesis, Universität Kiel, 2001Google Scholar
  14. 14.
    Grasedyck, L.: Adaptive recompression of Open image in new window -matrices for BEM. Technical report 17, Max Planck Institute for Mathematics in the Sciences, 2004.Google Scholar
  15. 15.
    Grasedyck, L., Hackbusch, W.: Construction and arithmetics of Open image in new window-matrices. Computing 70(4), 295–334 (2003)CrossRefGoogle Scholar
  16. 16.
    Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace in three dimensions. In: Acta Numerica 1997, Cambridge University Press, 1997, pp. 229–269Google Scholar
  17. 17.
    Hackbusch, W.: A sparse matrix arithmetic based on Open image in new window-matrices. Part I: Introduction to Open image in new window-matrices. Computing 62, 89–108 (1999)CrossRefGoogle Scholar
  18. 18.
    Hackbusch, W., Khoromskij, B.: A sparse matrix arithmetic based on Open image in new window-matrices. Part II: Application to multi-dimensional problems. Computing 64, 21–47 (2000)Google Scholar
  19. 19.
    Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numerische Mathematik 54, 463–491 (1989)CrossRefGoogle Scholar
  20. 20.
    Rivlin, T.J.: The Chebyshev Polynomials. Wiley-Interscience, New York, 1984Google Scholar
  21. 21.
    Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60, 187–207 (1985)CrossRefGoogle Scholar
  22. 22.
    Sauter, S.: Variable order panel clustering (extended version). Technical report 52, Max-Planck-Institut für Mathematik, Leipzig, Germany, 1999Google Scholar
  23. 23.
    Tyrtyshnikov, E.: Incomplete cross approximation in the mosaic-skeleton method. Computing (64), 367–380 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations