Numerische Mathematik

, Volume 100, Issue 1, pp 91–115 | Cite as

A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes

  • Peter HansboEmail author
  • Carlo Lovadina
  • Ilaria Perugia
  • Giancarlo Sangalli


In this paper we propose a Lagrange multiplier method for the finite element solution of multi-domain elliptic partial differential equations using non-matching meshes. The interface Lagrange multiplier is chosen with the purpose of avoiding the cumbersome integration of products of functions on unrelated meshes (e.g, we will consider global polynomials as multiplier). The ideas are illustrated using Poisson’s equation as a model, and the proposed method is shown to be stable and optimally convergent. Numerical experiments demonstrating the theoretical results are also presented.


Differential Equation Partial Differential Equation Numerical Experiment Theoretical Result Mathematical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbosa, H.J.C., Hughes, T.J.R.: Boundary Lagrange multipliers in finite-element methods - error analysis in natural norms. Numer. Math. 62, 1–15 (1992)Google Scholar
  2. 2.
    Barrett, J.W., Elliot, C.M.: Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces. IMA J. Numer. Anal. 7, 283–300 (1987)Google Scholar
  3. 3.
    Barrett, J.W., Elliot, C.M.: Finite element approximation of the Dirichlet problem using the boundary penalty method. Numer. Math. 49, 343–366 (1986)Google Scholar
  4. 4.
    Becker, R., Hansbo, P., Stenberg, R.: A finite element method for domain decomposition with non-matching grids, M2AN Math. Model. Numer. Anal. 37, 209–225 (2003)CrossRefGoogle Scholar
  5. 5.
    Ben Belgacem, F.: The mortar finite element method with Lagrange multipliers. Numer. Math. 84, 173–197 (1999)CrossRefGoogle Scholar
  6. 6.
    Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. XI (Paris, 1989–1991), Pitman Res. Notes Math. Ser., 299, Longman Sci. Tech., Harlow, 1994, pp. 13–51Google Scholar
  7. 7.
    Brenner, S.: Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003)CrossRefGoogle Scholar
  8. 8.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Verlag, 1991Google Scholar
  9. 9.
    Chen, Z., Zhou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79, 175–202 (1998)CrossRefGoogle Scholar
  10. 10.
    Heinrich, B., Pietsch, K.: Nitsche type mortaring for some elliptic problem with corner singularities. Computing 68, 217–238 (2002)CrossRefGoogle Scholar
  11. 11.
    Heinrich, B., Nicaise, S.: The Nitsche mortar finite-element method for transmission problems with singularities. IMA J. Numer. Anal. 23, 331–358 (2003)CrossRefGoogle Scholar
  12. 12.
    Hu, Q., Liang, G., Liu, J.: Construction of a preconditioner for domain decomposition methods with polynomial Lagrangian multipliers. J. Comput. Math. 19, 213–224 (2001)Google Scholar
  13. 13.
    Le Tallec, P., Sassi, T.: Domain decomposition with nonmatching grids: augmented Lagrangian approach. Math. Comp. 64, 1367–1396 (1995)Google Scholar
  14. 14.
    Liang, G., He, J.: The non-conforming domain decomposition method for elliptic problems with Lagrangian multipliers. Chinese J. Numer. Math. Appl. 15, 8–19 (1993)Google Scholar
  15. 15.
    Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications. Vol. 1, Dunod, Paris, 1968Google Scholar
  16. 16.
    Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Univ. Hamburg 36, 9–15 (1971)Google Scholar
  17. 17.
    Priestley, A.: Exact projections and the Lagrange-Galerkin method: A realistic alternative to quadrature. J. Comput. Phys. 112, 316–333 (1994)Google Scholar
  18. 18.
    Schwab, Ch.: p- and hp- Finite Element Methods. Oxford University Press, 1998Google Scholar
  19. 19.
    Stenberg, R.: On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63, 139–148 (1995)CrossRefGoogle Scholar
  20. 20.
    Wohlmuth, B.I.: Discretization methods and iterative solvers based on domain decomposition. Springer Verlag, 2001Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Peter Hansbo
    • 1
    Email author
  • Carlo Lovadina
    • 2
  • Ilaria Perugia
    • 2
  • Giancarlo Sangalli
    • 3
  1. 1.Department of Applied MechanicsChalmers University of TechnologyGöteborgSweden
  2. 2.Dipartimento di MatematicaUniversità di PaviaPaviaItaly
  3. 3.Istituto di Matematica Applicata e Tecnologie Informatiche del C.N.R.PaviaItaly

Personalised recommendations