Numerische Mathematik

, Volume 98, Issue 4, pp 581–606 | Cite as

Solution of lambda-omega systems: Theta-schemes and multigrid methods

Article

Summary.

The numerical solution of a time-dependent reaction diffusion lambda-omega system discretized by theta-schemes and finite differences is considered. Stability and accuracy of finite difference theta-schemes for this system are established. To solve the time-implicit evolution equations a nonlinear multigrid method is applied. The convergence properties of this solver are investigated considering a linearized lambda-omega model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments.

I would like to thank the anonymous Referees for many comments and suggestions.

References

  1. 1.
    Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)MATHGoogle Scholar
  2. 2.
    Benzi, M., Bertaccini, D.: Approximate inverse preconditioning for shifted linear systems. BIT Numer. Math. 43, 231–244 (2003)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Borzì, A.: Multigrid methods for parabolic distributed optimal control problems. J. Comp. Appl. Math 157, 365–382 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Borzì, A., Kunisch, K., Kwak Do, Y.: Accuracy and convergence properties of the finite difference multigrid solution of an optimal control optimality system. SIAM J. Control Optim. 41, 1477–1497 (2003)CrossRefGoogle Scholar
  5. 5.
    Bramble, J.H.: Multigrid Methods. Pitman Research Notes in Mathematics Series, Essex, 1993Google Scholar
  6. 6.
    Bramble, J.H., Kwak Do, Y., Pasciak, J.E.: Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems. SIAM J. Numer. Anal. 31, 1746–1763 (1994)MathSciNetMATHGoogle Scholar
  7. 7.
    Bramble, J.H., Pasciak, J.E., Sammon, P.H., Thomèe, V.: Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data. Math. Comput. 52, 339–367 (1989)MathSciNetMATHGoogle Scholar
  8. 8.
    Bramble, J.H., Pasciak, J.E., Xu, J.: The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms. Math. Comput. 56, 1–34 (1991)MathSciNetMATHGoogle Scholar
  9. 9.
    Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977)MATHGoogle Scholar
  10. 10.
    Brandt, A., Greenwald, J.: Parabolic multigrid revisited. In: W. Hackbusch, U. Trottenberg (eds.), Multigrid Methods III, Int. Series of Numerical Mathematics, Vol. 98, Birkhäuser, Basel, 1991Google Scholar
  11. 11.
    Browning, G.L., Kreiss, H.-O.: Comparison of numerical methods for the calculation of two-dimensional turbulence. Math. Comput. 52, 369–388 (1989)MathSciNetMATHGoogle Scholar
  12. 12.
    Chou, S.H., Kwak Do, Y.: V-Cycle multigrid for a vertex-centered covolume method for elliptic problems. Numer. Math. 90(3), 441–458 (2002)CrossRefMATHGoogle Scholar
  13. 13.
    Cross, M., Hohenberg, P.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)CrossRefGoogle Scholar
  14. 14.
    Douglas, J., Dupont, T., Jr.: Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 7(4), 575–626 (1970)MATHGoogle Scholar
  15. 15.
    Duffy, A., Britton, K., Murray, J.: Spiral wave solutions of practical reaction-diffusion systems. SIAM J. Appl. Math 39(1), 8–13 (1980)MATHGoogle Scholar
  16. 16.
    Eguiluz, V.M., Hernandez-Garcia, E., Piro, O.: Complex Ginzburg-Landau equation in the presence of walls and corners. Phys. Rev. E 64, 1–10 (2001)Google Scholar
  17. 17.
    Hackbusch, W.: Multi-grid Methods and Applications. Springer-Verlag, New York, 1985Google Scholar
  18. 18.
    Hackbusch, W.: Elliptic Differential Equations. Springer-Verlag, New York, 1992Google Scholar
  19. 19.
    Hackbusch, W.: Parabolic multigrid methods. In: R. Glowinski, J.-L. Lions (eds.), Computing Methods in Applied Sciences and Engineering VI, North-Holland, Amsterdam, 1984Google Scholar
  20. 20.
    Hoffmann, K.-H., Tang, Q.: Ginzburg-Landau Phase Transition Theory and Superconductivity. Vol. 134, Birkhäuser, 2001Google Scholar
  21. 21.
    Horton, G., Vandewalle, S.: A space-time multigrid method for parabolic partial differential equations. SIAM J. Sci. Comput. 16(4), 848–864 (1995)MATHGoogle Scholar
  22. 22.
    Kopell, N., Howard, L.N.: Plane wave solutions to reaction-diffusion equations. Stud. Appl. Math. LII(4), 291–328 (1973)Google Scholar
  23. 23.
    Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer-Verlag, 1984Google Scholar
  24. 24.
    Kuramoto, Y., Koga, S.: Turbulized rotating chemical waves. Prog. Theor. Phys. 66(3), 1081–1085 (1981)Google Scholar
  25. 25.
    Larsson, S.: Lecture Notes on Semilinear Parabolic Problems. Department of Mathematics, Chalmers University of Technology, 1996Google Scholar
  26. 26.
    Larsson, S.: A shadowing result with applications to finite element approximation of reaction-diffusion equations. To appear in IMA J. Numer. Anal.Google Scholar
  27. 27.
    Larsson, S., Sanz-Serna, J.-M.: A shadowing result with applications to finite element approximation of reaction-diffusion equations. Math. Comput. 68, 55–72 (1999)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Larsson, S., Thomée, V., Zhou, S.Z.: On multigrid methods for parabolic problems. J. Comput. Math 13, 193–205 (1995)MathSciNetMATHGoogle Scholar
  29. 29.
    Levermore, C.D., Oliver, M.: The complex Ginzburg-Landau equation as a model problem. Lectures in Applied Mathematics, Vol. 31, AMS, Providence, 1996, pp. 141–190Google Scholar
  30. 30.
    Lord, G.L., Stuart, A.M.: Discrete Gevrey regularity, attractors and upper semicontinuity for a finite difference approximation to the Ginzburg-Landau equation. Numer. Func. Anal. Opt. 16, 1003–1047 (1995)MathSciNetMATHGoogle Scholar
  31. 31.
    Lord, G.L.: Attractors and inertial manifolds for the finite-difference approximations of the complex Ginzburg-Landau equation. SIAM J. Numer. Anal. 34(4), 1483–1512 (1997)CrossRefMATHGoogle Scholar
  32. 32.
    Lubich, C., Ostermann, A.: Hopf bifurcation of reaction-diffusion and Navier-Stokes equations under discretization. Numer. Math. 81, 53–84 (1998)CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.-L.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44(3), 311–370 (2002)MATHGoogle Scholar
  34. 34.
    Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations. Cambridge University Press, 1994Google Scholar
  35. 35.
    Murray, J.D.: Mathematical Biology. Springer-Verlag, 1993Google Scholar
  36. 36.
    Ostermann, A., Palencia, C.: Shadowing for nonautonomous parabolic problems with applications to long-time error bounds. SIAM J. Numer. Anal. 37(5), 1399–1419 (2000)CrossRefMATHGoogle Scholar
  37. 37.
    Paullet, J., Ermentrout, B., Troy, W.: The Existence of spiral waves in an oscillatory reaction-diffusion system. SIAM J. Appl. Math. 54(5), 1386–1401 (1994)MATHGoogle Scholar
  38. 38.
    Sherratt, J.A.: On the evolution of periodic plane waves in reaction-diffusion systems of λ - ω type. SIAM J. Appl. Math. 54(5), 1374–1385 (1994)MATHGoogle Scholar
  39. 39.
    Süli, E.: Finite Elements Methods for Partial Differential Equations. Lecture Notes, Oxford University Computing Laboratory, Oxford, 2001Google Scholar
  40. 40.
    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, 1997Google Scholar
  41. 41.
    Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, London, 2001Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Institut für MathematikKarl-Franzens-Universität GrazGrazAustria

Personalised recommendations