Numerische Mathematik

, Volume 98, Issue 1, pp 1–32

Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems

Article

Summary.

For the positive semidefinite system of linear equations of a block two-by-two structure, by making use of the Hermitian/skew-Hermitian splitting iteration technique we establish a class of preconditioned Hermitian/skew-Hermitian splitting iteration methods. Theoretical analysis shows that the new method converges unconditionally to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameter and the corresponding asymptotic convergence rate are computed exactly. Numerical examples further confirm the correctness of the theory and the effectiveness of the method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrow, K., Hurwicz, L., Uzawa, H.: Studies in Nonlinear Programming. Stanford University Press, Stanford, 1958Google Scholar
  2. 2.
    Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix. Anal. Appl. 24, 603–626 (2003)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Benzi, M., Golub, G.H.: An iterative method for generalized saddle point problems. Technical Report SCCM-02-14, Scientific Computing and Computational Mathematics Program, Department of Computer Science, Stanford University, 2002Google Scholar
  4. 4.
    Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34, 1072–1092 (1997)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York and London, 1991Google Scholar
  6. 6.
    Elman, H.C., Schultz, M.H.: Preconditioning by fast direct methods for nonself-adjoint nonseparable elliptic equations. SIAM J. Numer. Anal. 23, 44–57 (1986)MathSciNetGoogle Scholar
  7. 7.
    Elman, H.C., Silvester, D.J., Wathen, A.J.: Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations. Numer. Math. 90, 665–688 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Fortin, M., Glowinski, R.: Augmented Lagrangian Methods, Applications to the Numerical Solution of Boundary Value Problems. North-Holland, Amsterdam, 1983Google Scholar
  9. 9.
    Golub, G.H., Vanderstraeten, D.: On the preconditioning of matrices with skew-symmetric splittings. Numer. Algorithms 25, 223–239 (2000)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd Edition. The Johns Hopkins University Press, Baltimore, 1996Google Scholar
  11. 11.
    Golub, G.H., Wathen, A.J.: An iteration for indefinite systems and its application to the Navier-Stokes equations. SIAM J. Sci. Comput. 19, 530–539 (1998)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, 1997Google Scholar
  13. 13.
    Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21, 1969–1972 (2000)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1996Google Scholar
  15. 15.
    Wang, C.-L., Bai, Z.-Z.: Sufficient conditions for the convergent splittings of non-Hermitian positive definite matrices. Linear Algebra Appl. 330, 215–218 (2001)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Wathen, A.J., Silvester, D.J.: Fast iterative solution of stabilized Stokes systems. Part I: Using simple diagonal preconditioners. SIAM J. Numer. Anal. 30, 630–649 (1993)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.State Key Laboratory of Scientific/Engineering ComputingInstitute of Computational Mathematics and Scientific/Engineering ComputingBeijingPeople’s Republic of China
  2. 2.Scientific Computing and Computational Mathematics ProgramDepartment of Computer Science, Stanford UniversityStanfordUSA

Personalised recommendations