Numerische Mathematik

, Volume 97, Issue 2, pp 321–352 | Cite as

A penalty method for American options with jump diffusion processes

  • Y. d’Halluin
  • P.A. Forsyth
  • G. Labahn


The fair price for an American option where the underlying asset follows a jump diffusion process can be formulated as a partial integral differential linear complementarity problem. We develop an implicit discretization method for pricing such American options. The jump diffusion correlation integral term is computed using an iterative method coupled with an FFT while the American constraint is imposed by using a penalty method. We derive sufficient conditions for global convergence of the discrete penalized equations at each timestep. Finally, we present numerical tests which illustrate such convergence.


Diffusion Process Iterative Method Numerical Test Complementarity Problem Global Convergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amadori, A.L.: The obstacle problem for nonlinear integro-differential equations arising in option pricing. Working paper, Istituto pre le Applicazione del Calcolo ‘‘M. Picone’’, Rome,∼amadoriGoogle Scholar
  2. 2.
    Amin, K.: Jump diffusion option valuation in discrete time. J. Finance 48, 1833–1863 (1993)Google Scholar
  3. 3.
    Andersen, L., Andreasen, J.: Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. Rev. Derivatives Res. 4, 231–262 (2000)CrossRefGoogle Scholar
  4. 4.
    Ayache, E., Forsyth, P.A., Vetzal, K.R.: Next generation models for convertible bonds with credit risk. Wilmott Magazine, December 2002, pp. 68–77Google Scholar
  5. 5.
    Barles, G.: Convergence of numerical schemes for degenerate parabolic equations arising in finance. In L.C.G. Rogers and D. Talay, (eds.), Numerical Methods in Finance, Cambridge University Press, Cambridge, 1997, pp. 1–21Google Scholar
  6. 6.
    Briani, M., La Chioma, C., Natalini, R.: Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory. Working paper, Istituto pre le Applicazione del Calcolo ‘‘M. Picone’’, Rome,∼natalini, to appear in Numerische MathematikGoogle Scholar
  7. 7.
    Broadie, M., Yamamoto, Y.: Application of the Fast Gauss transform to option pricing. Working paper, Columbia School of Business, 2002Google Scholar
  8. 8.
    Coleman, T.F., Li, Y., Verma, A.: Reconstructing the unknown local volatility function. J. Comput. Finance 2, 77–102 (1999)Google Scholar
  9. 9.
    Cottle, R.W., Pang, J.-S., Stone, R.E: The Linear Complementarity Problem. Academic Press, 1992Google Scholar
  10. 10.
    Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bulletin of the Am. Math. Soc. 27, 1–67 July 1992Google Scholar
  11. 11.
    Cryer, C.W.: The efficient solution of linear complementarity problems for tridiagonal Minkowski matrices. ACM Trans. Math. Softw. 9, 199–214 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    d’Halluin, Y., Forsyth, P.A., Vetzal, K.R.: Robust numerical methods for contingent claims under jump diffusion processes.∼paforsyt/jump.pdf, submitted to IMA J. Numer. Anal.Google Scholar
  13. 13.
    d’Halluin, Y., Forsyth, P.A., Vetzal, K.R., Labahn, G.: A numerical PDE approach for pricing callable bonds. Appl. Math. Finance 8, 49–77 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput. 14, 1368–1393 November 1993Google Scholar
  15. 15.
    Elliot, E.M., Ockendon, J.R.: Weak and Variational Methods for Moving Boundary Problems. Pitman, 1982Google Scholar
  16. 16.
    Forsyth, P.A., Vetzal, K.R.: Quadratic convergence of a penalty method for valuing American options. SIAM J. Sci. Comput. 23, 2096–2123 (2002)Google Scholar
  17. 17.
    Greengard, L., Strain, J.: The fast Gauss transform. SIAM J. Sci. Comput. 12, 79–94 (1991)Google Scholar
  18. 18.
    Hull, J.: Options, Futures, and Other Derivatives. Prentice Hall, Inc., Upper Saddle River, NJ, 3rd edition, 1997Google Scholar
  19. 19.
    Johnson, C.: Numerical Solutions of Partial Differential Equations By the Finite Element Method. Cambridge University Press, Cambridge, 1987Google Scholar
  20. 20.
    Kangro, R., Nicolaides, R.: Far field boundary conditions for Black-Scholes equations. SIAM J. Numer. Anal. 38(4), 1357–1368 (2000)CrossRefzbMATHGoogle Scholar
  21. 21.
    Lewis, A.: Fear of jumps. Wilmott Magazine, December 2002, pp. 60–67Google Scholar
  22. 22.
    Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Financial Econ. 3, 125–144 (1976)CrossRefGoogle Scholar
  23. 23.
    Meyer, G.H.: The numerical valuation of options with underlying jumps. Acta Math. Univ. Comenianae 67, 69–82 (1998)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Mulinacci, S.: An approximation of American option prices in a jump diffusion model. Stochastic Processes and their Applications 62, 1–17 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Pham, H.: Optimal stopping of controlled jump diffusion processes: a viscosity solution approach. J. Math. Syst. Estimation and Control 8, 1–27 (1998)zbMATHGoogle Scholar
  26. 26.
    Pooley, D.M., Forsyth, P.A., Vetzal, K.R.: Numerical convergence properties of option pricing PDEs with uncertain volatility. IMA J. Numer. Anal. 23, 241–267 (2003)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Potts, D., Steidl, G., Tasche, M.: Fast Fourier transforms for nonequispaced data: A tutorial. In: Modern Sampling Theory: Mathematics and Application, J.J. Benedetto and P. Ferreira, (eds.), ch. 12, Birkhauser, 2000 , pp. 253–274Google Scholar
  28. 28.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (UK) and New York, 2nd edition, 1992Google Scholar
  29. 29.
    Rannacher, R.: Finite element solution of diffusion problems with irregular data. Numer. Math. 43, 309–327 (1984)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Tavella, D., Randall, C.: Pricing financial instruments: the finite difference method. John Wiley & Sons, Inc, 2000Google Scholar
  31. 31.
    Vazquez, A.A., Oosterlee, C.W.: Numerical valuation of options with jumps in the underlying. Working paper, Delft University of Technology, 2003Google Scholar
  32. 32.
    Ware, A.F.: Fast approximate Fourier transforms for irregularly spaced data. SIAM Rev. 40, 838–856 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Wilmott, P.: Derivatives. John Wiley and Sons Ltd, Chichester, 1998Google Scholar
  34. 34.
    Windcliff, H., Forsyth, P.A., Vetzal, K.R.: Shout options: a framework for pricing contracts which can be modified by the investor. J. Comput. Appl. Math. 134, 213–241 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Windcliff, H., Forsyth, P.A., Vetzal, K.R.: Valuation of segregated funds: shout options with maturity extensions. Insurance: Math. Econ. 29, 1–21 (2001)CrossRefGoogle Scholar
  36. 36.
    Windcliff, H., Forsyth, P.A., Vetzal, K.R.: Analysis of the stability of the linear boundary condition for the Black-Scholes equation, 2003. Submitted to the J. of Comput. FinanceGoogle Scholar
  37. 37.
    Zhang, X.L.: Numerical analysis of American option pricing in a jump-diffusion model. Math. Oper. Res. 22, 668–690 (1997)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Zvan, R., Forsyth, P.A., Vetzal, K.R.: Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91, 199–218 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Zvan, R., Forsyth, P.A., Vetzal, K.R.: Discrete Asian barrier options. J. Comput. Finance 3(Fall), 41–67 (1999)Google Scholar
  40. 40.
    Zvan, R., Forsyth, P.A., Vetzal, K.R.: A finite element approach to the pricing of discrete lookbacks with stochastic volatility. Appl. Math. Finance 6, 87–106 (1999)CrossRefzbMATHGoogle Scholar
  41. 41.
    Zvan, R., Forsyth, P.A., Vetzal, K.R.: A finite volume approach for contingent claims valuation. IMA J. Numer. Anal. 21, 703–731 (2001)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of WaterlooCanada

Personalised recommendations