Numerische Mathematik

, Volume 97, Issue 2, pp 219–268 | Cite as

Adaptive Finite Element Methods with convergence rates



Adaptive Finite Element Methods for numerically solving elliptic equations are used often in practice. Only recently [12], [17] have these methods been shown to converge. However, this convergence analysis says nothing about the rates of convergence of these methods and therefore does, in principle, not guarantee yet any numerical advantages of adaptive strategies versus non-adaptive strategies. The present paper modifies the adaptive method of Morin, Nochetto, and Siebert [17] for solving the Laplace equation with piecewise linear elements on domains in ℝ2 by adding a coarsening step and proves that this new method has certain optimal convergence rates in the energy norm (which is equivalent to the H1 norm). Namely, it is shown that whenever s>0 and the solution u is such that for each n≥1, it can be approximated to accuracy O(n−s) in the energy norm by a continuous, piecewise linear function on a triangulation with n cells (using complete knowledge of u), then the adaptive algorithm constructs an approximation of the same type with the same asymptotic accuracy while using only information gained during the computational process. Moreover, the number of arithmetic computations in the proposed method is also of order O(n) for each n≥1. The construction and analysis of this adaptive method relies on the theory of nonlinear approximation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction, Springer, 1976Google Scholar
  2. 2.
    Binev, P., DeVore, R.: Fast computation in tree approximation. Numer. Math., this issueGoogle Scholar
  3. 3.
    Binev, P., Dahmen, W., DeVore, R., Petrushev, P.: Approximation classes for adaptive methods. Serdica Math. J. 28, 391–416 (2002)MathSciNetGoogle Scholar
  4. 4.
    Babuška, I., Vogelius, M.: Feedback and adaptive finite element solution of one dimensional boundary value problems. Numer. Math. 44, 75–102 (1984)MathSciNetGoogle Scholar
  5. 5.
    Babuška, I., Miller, A.: A feedback finite element method with a posteriori error estimations: Part I. The finite element method and some basic properties of the a posteriori error estimator. Comput. Methods Appl. Mech. Engrg. 61, 1–40 (1987)Google Scholar
  6. 6.
    Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations - convergence rates. Math. Comp 70, 27–75 (2001)MathSciNetMATHGoogle Scholar
  7. 7.
    Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods II – beyond the elliptic case. Foundations of Comp. Math. 2, 203–245 (2002)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    DeVore, R., Sharpley, R.: Besov spaces on domains in ℝd. TAMS 335, 843–864 (1993)MATHGoogle Scholar
  9. 9.
    Dahlke, S.: Besov regularity for elliptic boundary value problems on polygonal domains. Appl. Math. Lett. 12, 31–36 (1999)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Dahlke, S., DeVore, R.: Besov regularity for elliptic boundary value problems. Comm. Partial Differential Equations. 22, 1–16 (1997)MathSciNetMATHGoogle Scholar
  11. 11.
    Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math. 63, 315–344 (1992)MathSciNetMATHGoogle Scholar
  12. 12.
    Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)MathSciNetGoogle Scholar
  13. 13.
    Griebel, M., Oswald, P.: Remarks on the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math. 70, 163–180 (1995)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Karaivanov, B., Petrushev, P.: Nonlinear piecewise polynomial approximation beyond Besov spaces. Appl. Comput. Harmon. Anal. 15, 177–223 (2003)Google Scholar
  15. 15.
    Lov’ asz, L., Plummer, M.D.: Matching Theory. Akad’ emiai Kiad’ o, Budapest, 1986Google Scholar
  16. 16.
    Mitchell, W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Transaction on Math. Software 15, 326–347 (1989)Google Scholar
  17. 17.
    Morin, P., Nochetto, R., Siebert, K.: Data Oscillation and Convergence of Adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)MathSciNetMATHGoogle Scholar
  18. 18.
    Oswald, P.: Multilevel Finite Element Approximations. Teubner Skripten zur Numerik, Teubner-Verlag, Stuttgart, 1994Google Scholar
  19. 19.
    Papadimitrious, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Englewood Cliffs, New Jersey, Prentice Hall, 1982.Google Scholar
  20. 20.
    Petersen, J.: Die Theorie der regulären Graphen. Acta Math 15, 193–220 (1891)Google Scholar
  21. 21.
    Triebel, H.: Interpolation Theory, Function Spaces, and Differential Operators, Amsterdam, North–Holland, 1978Google Scholar
  22. 22.
    Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Chichester, Wiley–Teubner, 1996Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of South CarolinaColumbiaUSA
  2. 2.Institute für Geometrie und Praktische MathematikRWTH AachenAachenGermany

Personalised recommendations