Numerische Mathematik

, Volume 95, Issue 2, pp 197–221 | Cite as

A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part I: Construction



We propose a new method for space-time refinement for the 1-D wave equation. This method is based on the conservation of a discrete energy through two different discretization grids which guarantees the stability of the scheme. Our approach results in a non-interpolatory scheme whose stability condition is not affected by the transition between the two grids.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bamberger, A., Glowinski, R., Tran, Q.H.: A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change. SIAM J. Num. Anal. 34(2), 603–639 (1997)MATHGoogle Scholar
  2. 2.
    Bernardi, C., Maday, Y.: Raffinement de maillage en éléments finis par la méthode des joints. C. R. Acad. Sci. Paris Sér. I Math. 320(3), 373–377 (1995)MATHGoogle Scholar
  3. 3.
    Chevalier, M.W., Luebbers, R.J.: FDTD local grid with material traverse. IEEE Trans. Antennas and Propagation 45(3), 411–421 (1997)CrossRefGoogle Scholar
  4. 4.
    Collino, F., Fouquet, T., Joly, P.: A conservative space-time mesh refinement method for the 1-D wave equations: Analysis. Numer. Math. 95(2), 223–251 (2003)Google Scholar
  5. 5.
    Collino, F., Fouquet, T., Joly, P.: Analyse numérique d'une méthode de raffinement de maillage espace-temps pour l'équation des ondes. Technical Report 3474, INRIA, Aout 1998Google Scholar
  6. 6.
    Fouquet, T.: Raffinement de maillage spatio temporel pour les équations de Maxwell. PhD thesis, Université Paris IX Dauphine, June 2000Google Scholar
  7. 7.
    Gedney, S.D., Lansing, F.: Computational Electrodynamics: the Finite-Difference Time-Domain Method, chapter Explicit Time-Domain Solution of Maxwell's Equations Using Nonorthogonal and Unstructured Grids, pp. 343–393. A. Taflove, Artech House Boston London edition, 1995Google Scholar
  8. 8.
    Gustafsson, B., Kreiss, H.-O., Sundström, A.: Stability theory of difference approximations for initial boundary value problems. Math. Comp. 26, 649–686 (1972)MATHGoogle Scholar
  9. 9.
    Kim, I.S., Hoefer, W.J.R.: A local mesh refinement algorithm for the time-domain finite-difference method to solve Maxwell's equations. IEEE Trans. Microwave Theory Tech. 38(6), 812–815 (1990)Google Scholar
  10. 10.
    Kunz, K.S., Simpson, L.: A technique for increasing the resolution of finite-difference solutions to the Maxwell equations. IEEE Trans. Electromagn. Compat. EMC-23, 419–422 (1981)Google Scholar
  11. 11.
    Monk, P.: Sub-gridding FDTD schemes. ACES J. 11, 37–46 (1996)Google Scholar
  12. 12.
    Prescott, D.T., Shuley, N.V.: A method for incorporating different sized cells into the finite-difference time-domain analysis technique. IEEE Microwave Guided Wave Lett. 2, 434–436 (1992)CrossRefGoogle Scholar
  13. 13.
    Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas and propagation 302–307 (1966)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.INRIA Rocquencourt BP105 Le ChesnayFrance

Personalised recommendations