Advertisement

Numerische Mathematik

, Volume 95, Issue 1, pp 1–28 | Cite as

Existence of ℋ-matrix approximants to the inverse FE-matrix of elliptic operators with L -coefficients

  • Mario Bebendorf
  • Wolfgang Hackbusch
Article

Abstract

This article deals with the existence of blockwise low-rank approximants — so-called ℋ-matrices — to inverses of FEM matrices in the case of uniformly elliptic operators with L -coefficients. Unlike operators arising from boundary element methods for which the ℋ-matrix theory has been extensively developed, the inverses of these operators do not benefit from the smoothness of the kernel function. However, it will be shown that the corresponding Green functions can be approximated by degenerate functions giving rise to the existence of blockwise low-rank approximants of FEM inverses. Numerical examples confirm the correctness of our estimates. As a side-product we analyse the ℋ-matrix property of the inverse of the FE mass matrix.

Keywords

Kernel Function Green Function Boundary Element Mass Matrix Boundary Element Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bebendorf: Effiziente numerische Lösung von Randintegralgleichungen unter Verwendung von Niedrigrang-Matrizen. dissertation.de, Verlag im Internet, 2001. ISBN 3-89825-183-7Google Scholar
  2. 2.
    M. Bebendorf: Approximation of boundary element matrices. Numer. Math. 86, 565–589 (2000)Google Scholar
  3. 3.
    S. Börm, L. Grasedyck, W. Hackbusch: Introduction to hierarchical matrices with applications. 2002. To appear.Google Scholar
  4. 4.
    S. Demko, W. F. Moss, P. W. Smith: Decay rates for inverses of band matrices. Math. Comp. 43, 491–499 (1984)MathSciNetzbMATHGoogle Scholar
  5. 5.
    G. Dolzmann, S. Müller: Estimates for Green's matrices of elliptic systems by L p theory. Manuscripta Math., 88, 261–273 (1995)Google Scholar
  6. 6.
    I.P. Gavrilyuk, W. Hackbusch, B. Khoromskij: ℋ-matrix approximation for the operator exponential with applications. Numer. Math., 92, 83–111 (2002)Google Scholar
  7. 7.
    M. Giaquinta: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton University Press, Princeton, NJ, (1983)Google Scholar
  8. 8.
    D. Gilbarg, N. S. Trudinger: Elliptic partial differential equations of second order. Springer-Verlag, Berlin, 2001. Reprint of the 1998 editionGoogle Scholar
  9. 9.
    L. Grasedyck: Theorie und Anwendungen Hierarchischer Matrizen. Dissertation, Universität Kiel (2001)Google Scholar
  10. 10.
    L. Grasedyck, W. Hackbusch: Construction and arithmetics of ℋ-matrices. In preparationGoogle Scholar
  11. 11.
    L. Grasedyck, W. Hackbusch, S. Le~Borne: Adaptive refinement and clustering of ℋ-matrices. Technical Report 106, Max-Planck-Institut für Mathematik, Leipzig, 2001Google Scholar
  12. 12.
    M. Grüter, K.-O. Widman: The Green function for uniformly elliptic equations. Manuscripta Math. 37, 303–342 (1982)Google Scholar
  13. 13.
    W. Hackbusch: Multi-grid methods and applications. Springer-Verlag, Berlin, 1985Google Scholar
  14. 14.
    W. Hackbusch: Theorie und Numerik elliptischer Differentialgleichungen. B. G. Teubner, Stuttgart, 1996 - English translation: Elliptic differential equations. Theory and numerical treatment. Springer-Verlag, Berlin, 1992Google Scholar
  15. 15.
    W. Hackbusch: Iterative Lösung groß er schwachbesetzter Gleichungssysteme. Teubner, Stuttgart, 2nd edition, 1993 - English translation: Iterative solution of large sparse systems. Springer-Verlag, New York, 1994Google Scholar
  16. 16.
    W. Hackbusch: Integralgleichungen. Theorie und Numerik. Teubner, Stuttgart, 2nd edition, 1997 - English translation: Integral equations. Theory and numerical treatment. Volume 128 of ISNM. Birkhäuser, Basel, 1995Google Scholar
  17. 17.
    W. Hackbusch: A sparse matrix arithmetic based on ℋ-matrices. I. Introduction to ℋ-matrices. Computing 62, 89–108 (1999)Google Scholar
  18. 18.
    W. Hackbusch, B. N. Khoromskij: A sparse ℋ-matrix arithmetic. II. Application to multi-dimensional problems. Computing 64, 21–47 (2000)zbMATHGoogle Scholar
  19. 19.
    W. Hackbusch, Z. P. Nowak: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)MathSciNetzbMATHGoogle Scholar
  20. 20.
    G. Meinardus: Approximation of functions: Theory and numerical methods. Springer-Verlag, New York, 1967Google Scholar
  21. 21.
    L. E. Payne, H. F. Weinberger: An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5, 286–292 1960Google Scholar
  22. 22.
    J. Wloka: Partielle Differentialgleichungen. B. G. Teubner, Stuttgart, 1982Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  1. 1.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  2. 2.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations