Numerische Mathematik

, Volume 95, Issue 2, pp 337–345 | Cite as

On an alternative to Gerschgorin circles and ovals of Cassini



An alternative to Gerschgorin circles for the localization of the real eigenvalues of a real matrix was studied in [8]. In this paper we present a similar alternative to the Brauer's theorem on ovals of Cassini.


Real Eigenvalue Real Matrix Similar Alternative Gerschgorin Circle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brauer, A.: Limits for the characteristic roots of a matrix II. Duke Math. J. 14, 21–26 (1947)MathSciNetMATHGoogle Scholar
  2. 2.
    Brualdi, R.: Matrices, eigenvalues and directed graphs. Lin. Multilin. Alg. 11, 143–165 (1982)MathSciNetMATHGoogle Scholar
  3. 3.
    Brualdi, R.A., Ryser, H.J.: Combinatorial matrix theory. Encyclopedia of Mathematics and its applications 39, Cambridge University Press, 1991Google Scholar
  4. 4.
    Carnicer, J.M., Goodman, T.N.T., Peña, J.M.: Linear conditions for positive determinants. Linear Algebra Appl. 292, 39–59 (1999)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Fan K.: Note on M-matrices. Quart. J. Math. Oxford Ser. 11(2), 43–49 (1961)Google Scholar
  6. 6.
    Li, B., Tsatsomeros, T.J.: Doubly diagonally dominant matrices, Linear Algebra Appl. 261, 221–235 (1997)Google Scholar
  7. 7.
    Ostrowski, A.: Über die Determinanten mit überwiegender Hauptdiagonale, Comm. Mat. Helv. 10, 69–96 (1937)MATHGoogle Scholar
  8. 8.
    Peña, J.M.: A class of P-matrices with applications to the localization of the eigenvalues of a real matrix. SIAM J. Matrix Anal. Appl. 22, 1027–1037 (2001), (electronically)CrossRefGoogle Scholar
  9. 9.
    Rump, S.M.: Ill-conditioned matrices are componentwise near to singularity. SIAM Rev. 41, 102–112 (1999)MathSciNetMATHGoogle Scholar
  10. 10.
    Varga, R.S.: Minimal Gerschgorin sets. Pacific J. Math. 15, 719–729 (1965)MATHGoogle Scholar
  11. 11.
    Varga, R.S., Krautstengl, A.: On Geršgorin-type problems and ovals of Cassini. Electron. Trans. Numer. Anal. 8, 15–20 (1999)MathSciNetMATHGoogle Scholar
  12. 12.
    Zhang, X., Gu, D.: A note on Brauer's theorem. Linear Algebra Appl. 196, 163–174 (1994)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  1. 1.Departamento de Matemática AplicadaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations