Numerische Mathematik

, Volume 95, Issue 1, pp 163–195 | Cite as

Pointwise a posteriori error control for elliptic obstacle problems

  • Ricardo H. NochettoEmail author
  • Kunibert G. Siebert
  • Andreas Veeser


We consider a finite element method for the elliptic obstacle problem over polyhedral domains in ℝ d , which enforces the unilateral constraint solely at the nodes. We derive novel optimal upper and lower a posteriori error bounds in the maximum norm irrespective of mesh fineness and the regularity of the obstacle, which is just assumed to be Hölder continuous. They exhibit optimal order and localization to the non-contact set. We illustrate these results with simulations in 2d and 3d showing the impact of localization in mesh grading within the contact set along with quasi-optimal meshes.


Finite Element Method Error Bound Maximum Norm Mesh Fineness Posteriori Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Adams: Sobolev spaces, vol. 65 of Pure and Applied Mathematics, Academic Press, Inc., a subsidiary of Harcourt Brace Jovanovich, Publishers, New York - San Francisco - London 1975Google Scholar
  2. 2.
    C. Baiocchi: Estimation d'erreur dans L pour les inèquations à obstacle, in Mathematical Aspects of Finite Element Methods, Proc. Conf. Rome 1975, I. Galligani and E. Magenes, eds., vol. 606 of Lect. Notes Math 27–34 (1977)Google Scholar
  3. 3.
    Z. Chen, R. H. Nochetto: Residual type a~posteriori error estimates for elliptic obstacle problems, Numer. Math 84, 527–548 (2000)MathSciNetzbMATHGoogle Scholar
  4. 4.
    E. Dari, R. G. Durán, C. Padra: Maximum norm error estimators for three-dimensional elliptic problems, SIAM J. Numer. Anal 37, 683–700 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    C. M. Elliott: On the Finite Element Approximation of an Elliptic Variational Inequality Arising from an Implicit Time Discretization of the Stefan Problem, IMA J. Numer. Anal 1, 115–125 (1981)Google Scholar
  6. 6.
    L. C. Evans, R. Gariepy: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Inc., 2000 Corporate Blvd., N.W., Boca Ratin, Florida, 33431, 1992Google Scholar
  7. 7.
    J. Frehse, U. Mosco: Irregular obstacles and quasivariational inequalities of stochastic impulse control, Ann. Scuola Norm. Sup. Cl. Pisa 9, 105–157 (1982)Google Scholar
  8. 8.
    A. Friedman: Variational Principles and Free-Boundary Problems, Pure Appl. Math., John Wiley, New York 1982Google Scholar
  9. 9.
    D. Kinderlehrer, G. Stampacchia: An Introduction to Variational Inequalities and their Applications, vol. 88 of Pure Appl. Math., Academic Press, New York 1980Google Scholar
  10. 10.
    J. Nitsche: L convergence of finite element approximations, in Mathematical Aspects of Finite Element Methods, Proc. Conf. Rome 1975, I. Galligani and E. Magenes, eds., vol. 606 of Lectures Notes Math, 261–274 (1977)Google Scholar
  11. 11.
    R. H. Nochetto: Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. Comp 64, 1–22 (1995)Google Scholar
  12. 12.
    R. H. Nochetto, L. B. Wahlbin: Positivity preserving finite element approximation. To appear in Math. Comp.Google Scholar
  13. 13.
    J.-F. Rodrigues: Obstacle Problems in Mathematical Physics, vol. 134 of North-Holland Math. Stud., North-Holland, Amsterdam 1987Google Scholar
  14. 14.
    A. Schatz, L. Wahlbin: On the quasi-optimality in L of the H 1 0 projection into finite element spaces, Math. Comp 36, 1–22 (1982)MathSciNetGoogle Scholar
  15. 15.
    A. Schmidt, K. G. Siebert: ALBERT –- Software for Scientific Computations and Applications, Acta Math. Univ. Comenianae 70, 105–122 (2001)zbMATHGoogle Scholar
  16. 16.
    A. Schmidt, K. G. Siebert: ALBERT: An adaptive hierarchical finite element toolbox, Documentation, Preprint 06/2000 Universität Freiburg, 244~p.Google Scholar
  17. 17.
    A. Veeser: On A~Posteriori Error Estimation for Constant Obstacle Problems. In: Numerical Methods for Viscosity Solution and Applications, M. Falcone e C. Makridakis (ed.), World Scientific Publishing Company, Singapore 2001Google Scholar
  18. 18.
    A. Veeser: Efficient and reliable a~posteriori error estimators for elliptic obstacle problems, SIAM J. Numer. Anal 39, 146–167 (2001)CrossRefGoogle Scholar
  19. 19.
    R. Verfürth: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Advances in Numerical Mathematics, John Wiley, Chichester 1996Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Ricardo H. Nochetto
    • 1
    Email author
  • Kunibert G. Siebert
    • 2
  • Andreas Veeser
    • 3
  1. 1.Department of Mathematics and Institute of Physical Science and TechnologyUniversity of MarylandCollege ParkUSA
  2. 2.Institut für Angewandte MathematikFreiburgGermany
  3. 3.Dipartimento di MatematicaUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations