Changes in nitric oxide synthase levels are associated with impaired cardiac function and tolerance to ischemia-reperfusion injury in male rats with transient congenital hypothyroidism

  • Mahboubeh Ghanbari
  • Reza Norouzirad
  • Fatemeh Bagheripuor
  • Sajad JeddiEmail author
  • Asghar GhasemiEmail author
Original Article


Transient congenital hypothyroidism (TCH) has long-lasting consequences on the cardiovascular system during adulthood. The aim of this study was to determine whether nitric oxide (NO) and NO-producing enzymes are involved in impaired cardiac function as well as decreased tolerance to ischemia-reperfusion (IR) injury in adult male rats with TCH. Pregnant rats were divided into control and hypothyroid groups. Male offspring rats were categorized in control and hypothyroid (TCH) groups at week 16. Levels of NOx (nitrate+nitrite) and neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS) were measured in hearts of rats and isolated perfused hearts from both groups were subjected to IR. Levels of NOx and NOSs were also measured in both groups after ischemia. Compared with controls, heart NOx levels were higher at baseline (48.0 ± 4.9 vs. 35.0 ± 2.6 μmol/L; P = 0.034) and following IR (103.6 ± 4.2 vs. 70.2 ± 2.7 μmol/L; P < 0.001) in rat with TCH. At baseline, compared with controls, heart iNOS and nNOS levels were significantly higher in rats with TCH (6.12 ± 0.34 vs. 4.78 ± 0.27 ng/mg protein; P = 0.008 for iNOS and 4.87 ± 0.28 vs. 3.55 ± 0.23 ng/mg protein; P = 0.003 for nNOS). Following IR, in rats with TCH, heart iNOS levels increased (11.75 ± 2.02 vs. 6.12 ± 0.34, ng/mg protein; P = 0.015) whereas nNOS level decreased (4.10 ± 0.25 vs. 4.87 ± 0.28 ng/mg protein; P = 0.063). Adverse effects of TCH on cardiac function are associated with increased ratio of iNOS/eNOS; in addition, increased heart nNOS levels are involved in impaired cardiac function while its decrease is associated with decreased tolerance to IR injury.


Transient congenital hypothyroidism Nitric oxide Cardiac function Neuronal NOS Inducible NOS Endothelial NOS 



The authors wish to acknowledge Ms.Niloofar Shiva for the critical editing of English grammar and syntax of the manuscript.

Author contributions

MGH and AGH conceived and designed the research. MGH, SJ, RN, and FB performed experiments and analyzed the data. MGH, SJ, and AGH wrote the manuscript. All authors have read and approved the manuscript.

Funding information

This study was supported by a Grant No 915 by the Research Institute for Endocrine Sciences of RIES Shahid Beheshti University of Medical Sciences.

Compliance with ethical standards

All experimental procedures employed, as well as rat care and handling, were in accordance with guidelines provided by the local ethics committee of the RIES of Shahid Beheshti University of Medical Sciences. (Ethic code: IR.SBMU.Endocrine.Rec.1396.398).

Conflict of interest

The authors declare that they have no competing interests.


  1. Andreadou I, Iliodromitis EK, Rassaf T, Schulz R, Papapetropoulos A, Ferdinandy P (2015) The role of gasotransmitters NO, H2S and CO in myocardial ischaemia/reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol 172:1587–1606PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bagheripuor F, Ghanbari M, Zahediasl S, Ghasemi A (2015) Comparison of the effects of fetal hypothyroidism on glucose tolerance in male and female rat offspring. J Physiol Sci 65:179–185PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bagheripuor F, Ghanbari M, Piryaei A, Ghasemi A (2018) Effects of fetal hypothyroidism on uterine smooth muscle contraction and structure of offspring rats. Exp Physiol 103:683–692PubMedCrossRefPubMedCentralGoogle Scholar
  4. Baker JE, Holman P, Kalyanaraman B, Griffith OW, Pritchard KA Jr (1999) Adaptation to chronic hypoxia confers tolerance to subsequent myocardial ischemia by increased nitric oxide production. Ann N Y Acad Sci 874:236–253PubMedCrossRefPubMedCentralGoogle Scholar
  5. Besedina A (2016) NO-synthase activity in patients with coronary heart disease associated with hypertension of different age groups. J Med Biochem 35:43–49PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bhavani N (2011) Transient congenital hypothyroidism. Indian J Endocrinol Metab 15:S117–S120PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bilim O, Takeishi Y, Kitahara T, Arimoto T, Niizeki T, Sasaki T, Goto K, Kubota I (2008) Diacylglycerol kinase zeta inhibits myocardial atrophy and restores cardiac dysfunction in streptozotocin-induced diabetes mellitus. Cardiovasc Diabetol 7:2PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brunner F, Maier R, Andrew P, Wolkart G, Zechner R, Mayer B (2003) Attenuation of myocardial ischemia/reperfusion injury in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Cardiovasc Res 57:55–62PubMedCrossRefPubMedCentralGoogle Scholar
  9. Burger DE, Lu X, Lei M, Xiang FL, Hammoud L, Jiang M, Wang H, Jones DL, Sims SM, Feng Q (2009) Neuronal nitric oxide synthase protects against myocardial infarction-induced ventricular arrhythmia and mortality in mice. Circulation 120:1345–1354PubMedPubMedCentralCrossRefGoogle Scholar
  10. Burkard N, Rokita AG, Kaufmann SG, Hallhuber M, Wu R, Hu K, Hofmann U, Bonz A, Frantz S, Cartwright EJ, Neyses L, Maier LS, Maier SK, Renne T, Schuh K, Ritter O (2007) Conditional neuronal nitric oxide synthase overexpression impairs myocardial contractility. Circ Res 100:e32–e44PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chen Z, Qi Y, Gao C (2015) Cardiac myocyte-protective effect of microRNA-22 during ischemia and reperfusion through disrupting the caveolin-3/eNOS signaling. Int J Clin Exp Pathol 8:4614–4626PubMedPubMedCentralGoogle Scholar
  12. Chizzonite RA, Zak R (1984) Regulation of myosin isoenzyme composition in fetal and neonatal rat ventricle by endogenous thyroid hormones. J Biol Chem 259:12628–12632PubMedPubMedCentralGoogle Scholar
  13. Clayton JA, Collins FS (2014) Policy: NIH to balance sex in cell and animal studies. Nature 509:282–283PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cotton JM, Kearney MT, Shah AM (2002) Nitric oxide and myocardial function in heart failure: friend or foe? Heart 88:564–566PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cross HR, Murphy E, Steenbergen C (2002) Ca(2+) loading and adrenergic stimulation reveal male/female differences in susceptibility to ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 283:H481–H489PubMedCrossRefPubMedCentralGoogle Scholar
  16. Ding HL, Zhu HF, Dong JW, Zhu WZ, Yang WW, Yang HT, Zhou ZN (2005) Inducible nitric oxide synthase contributes to intermittent hypoxia against ischemia/reperfusion injury. Acta Pharmacol Sin 26:315–322PubMedCrossRefPubMedCentralGoogle Scholar
  17. Fan Q, Yang XC, Liu Y, Wang LF, Liu SH, Ge YG, Chen ML, Wang W, Zhang LK, Irwin MG, Xia Z (2011) Postconditioning attenuates myocardial injury by reducing nitro-oxidative stress in vivo in rats and in humans. Clin Sci (Lond) 120:251–261CrossRefGoogle Scholar
  18. Ferdinandy P, Schulz R (2003) Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol 138:532–543PubMedPubMedCentralCrossRefGoogle Scholar
  19. Forhead AJ, Fowden AL (2014) Thyroid hormones in fetal growth and prepartum maturation. J Endocrinol 221:R87–R103PubMedCrossRefPubMedCentralGoogle Scholar
  20. Fouron JC, Bourgin JH, Letarte J, Dussault JH, Ducharme G, Davignon A (1982) Cardiac dimensions and myocardial function of infants with congenital hypothyroidism. An echocardiographic study. Br Heart J 47:584–587PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gaynullina DK, Sofronova SI, Selivanova EK, Shvetsova AA, Borzykh AA, Sharova AP, Kostyunina DS, Martyanov AA, Tarasova OS (2017) NO-mediated anticontractile effect of the endothelium is abolished in coronary arteries of adult rats with antenatal/early postnatal hypothyroidism. Nitric Oxide 63:21–28PubMedCrossRefPubMedCentralGoogle Scholar
  22. Gaynullina DK, Borzykh AA, Sofronova SI, Selivanova EK, Shvetsova AA, Martyanov AA, Kuzmin IV, Tarasova OS (2018) Voluntary exercise training restores anticontractile effect of NO in coronary arteries of adult rats with antenatal/early postnatal hypothyroidism. Nitric Oxide 74:10–18PubMedCrossRefPubMedCentralGoogle Scholar
  23. Ghanbari M, Ghasemi A (2017) Maternal hypothyroidism: an overview of current experimental models. Life Sci 187:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  24. Ghanbari M, Jeddi S, Bagheripuor F, Ghasemi A (2015) The effect of maternal hypothyroidism on cardiac function and tolerance to ischemia-reperfusion injury in offspring male and female rats. J Endocrinol Investig 38:915–922CrossRefGoogle Scholar
  25. Ghanbari M, Bagheripuor F, Piryaei A, Zahediasl S, Noroozzadeh M, Ghasemi A (2016) Hemodynamic properties and arterial structure in male rat offspring with fetal hypothyroidism. Gen Physiol Biophys 35:397–405PubMedCrossRefPubMedCentralGoogle Scholar
  26. Ghasemi A, Mehrazin F, Zahediasl S (2013) Effect of nitrate and L-arginine therapy on nitric oxide levels in serum, heart, and aorta of fetal hypothyroid rats. J Physiol Biochem 69:751–759PubMedCrossRefPubMedCentralGoogle Scholar
  27. Gholami H, Jeddi S, Zadeh-Vakili A, Farrokhfall K, Rouhollah F, Zarkesh M, Ghanbari M, Ghasemi A (2017) Transient congenital hypothyroidism alters gene expression of glucose transporters and impairs glucose sensing apparatus in young and aged offspring rats. Cell Physiol Biochem 43:2338–2352PubMedCrossRefPubMedCentralGoogle Scholar
  28. Gonzalez C, Herradon E, Abalo R, Vera G, Perez-Nievas BG, Leza JC, Martin MI, Lopez-Miranda V (2011) Cannabinoid/agonist WIN 55,212-2 reduces cardiac ischaemia-reperfusion injury in Zucker diabetic fatty rats: role of CB2 receptors and iNOS/eNOS. Diabetes Metab Res Rev 27:331–340PubMedCrossRefPubMedCentralGoogle Scholar
  29. Haas GM, Liepold E, Schwandt P (2015) Low birth weight as a predictor of cardiovascular risk factors in childhood and adolescence? The PEP family heart study. Int J Prev Med 6:121PubMedPubMedCentralCrossRefGoogle Scholar
  30. Herr DJ, Aune SE, Menick DR (2015) Induction and assessment of ischemia-reperfusion injury in Langendorff-perfused rat hearts. J Vis Exp 101:e52908Google Scholar
  31. Horn P, Cortese-Krott MM, Amabile N, Hundsdorfer C, Kroncke KD, Kelm M, Heiss C (2012) Circulating microparticles carry a functional endothelial nitric oxide synthase that is decreased in patients with endothelial dysfunction. J Am Heart Assoc 2:e003764PubMedPubMedCentralGoogle Scholar
  32. Hu L, Wang J, Zhu H, Wu X, Zhou L, Song Y, Zhu S, Hao M, Liu C, Fan Y, Wang Y, Li Q (2016) Ischemic postconditioning protects the heart against ischemia-reperfusion injury via neuronal nitric oxide synthase in the sarcoplasmic reticulum and mitochondria. Cell Death Dis 7:e2222PubMedPubMedCentralCrossRefGoogle Scholar
  33. Jeddi S, Zaman J, Ghasemi A (2015) Effects of ischemic postconditioning on the hemodynamic parameters and heart nitric oxide levels of hypothyroid rats. Arq Bras Cardiol 104:136–143PubMedPubMedCentralGoogle Scholar
  34. Jeddi S, Khalifi S, Ghanbari M, Bageripour F, Ghasemi A (2016a) Effects of nitrate intake on myocardial ischemia-reperfusion injury in diabetic rats. Arq Bras Cardiol 107:339–347PubMedPubMedCentralGoogle Scholar
  35. Jeddi S, Zaman J, Ghasemi A (2016b) Effect of fetal hypothyroidism on tolerance to ischemia-reperfusion injury in aged male rats: role of nitric oxide. Nitric Oxide 55-56:82–90PubMedCrossRefPubMedCentralGoogle Scholar
  36. Jeddi S, Zaman J, Zadeh-Vakili A, Zarkesh M, Ghasemi A (2016c) Involvement of inducible nitric oxide synthase in the loss of cardioprotection by ischemic postconditioning in hypothyroid rats. Gene 580:169–176PubMedCrossRefPubMedCentralGoogle Scholar
  37. Knowlton AA, Korzick DH (2014) Estrogen and the female heart. Mol Cell Endocrinol 389:31–39PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kruger NJ (1994) The Bradford method for protein quantitation. Methods Mol Biol 32:9–15PubMedPubMedCentralGoogle Scholar
  39. Marcondes FK, Bianchi FJ, Tanno AP (2002) Determination of the estrous cycle phases of rats: some helpful considerations. Braz J Biol 62:609–614PubMedCrossRefPubMedCentralGoogle Scholar
  40. Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93:388–398PubMedCrossRefPubMedCentralGoogle Scholar
  41. Meehan J, Kennedy JM (1997) Influence of thyroid hormone on the tissue-specific expression of cytochrome c oxidase isoforms during cardiac development. Biochem J 327(Pt 1):155–160PubMedPubMedCentralCrossRefGoogle Scholar
  42. Mungrue IN, Gros R, You X, Pirani A, Azad A, Csont T, Schulz R, Butany J, Stewart DJ, Husain M (2002) Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest 109:735–743PubMedPubMedCentralCrossRefGoogle Scholar
  43. Nagareddy PR, McNeill JH, MacLeod KM (2009) Chronic inhibition of inducible nitric oxide synthase ameliorates cardiovascular abnormalities in streptozotocin diabetic rats. Eur J Pharmacol 611:53–59PubMedCrossRefPubMedCentralGoogle Scholar
  44. Niu X, Zhao L, Li X, Xue Y, Wang B, Lv Z, Chen J, Sun D, Zheng Q (2014) beta3-Adrenoreceptor stimulation protects against myocardial infarction injury via eNOS and nNOS activation. PLoS One 9:e98713PubMedPubMedCentralCrossRefGoogle Scholar
  45. Node K, Kitakaze M, Kosaka H, Komamura K, Minamino T, Inoue M, Tada M, Hori M, Kamada T (1996) Increased release of NO during ischemia reduces myocardial contractility and improves metabolic dysfunction. Circulation 93:356–364PubMedCrossRefPubMedCentralGoogle Scholar
  46. Novakovic TR, Dolicanin ZC, Djordjevic NZ (2017) Oxidative stress biomarkers in amniotic fluid of pregnant women with hypothyroidism. J Matern Fetal Neonatal Med 15:1–6Google Scholar
  47. Ostadal B, Ostadal P (2014) Sex-based differences in cardiac ischaemic injury and protection: therapeutic implications. Br J Pharmacol 171:541–554PubMedPubMedCentralCrossRefGoogle Scholar
  48. Parlakpinar H, Ozer MK, Acet A (2005) Effect of aminoguanidine on ischemia-reperfusion induced myocardial injury in rats. Mol Cell Biochem 277:137–142PubMedCrossRefPubMedCentralGoogle Scholar
  49. Rassaf T, Ferdinandy P, Schulz R (2014) Nitrite in organ protection. Br J Pharmacol 171:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  50. Rodriguez-Arnao MD, Rodriguez-Sanchez A, Rodriguez-Arnao J, Dulin-Iniguez E, Cano JM, Munoz-Fernandez MA (2003) Undetectable levels of tumor necrosis factor-alpha, nitric oxide and inadequate expression of inducible nitric oxide synthase in congenital hypothyroidism. Eur Cytokine Netw 14:65–68PubMedPubMedCentralGoogle Scholar
  51. Rytter D, Andersen SL, Bech BH, Halldorsson TI, Henriksen TB, Laurberg P, Olsen SF (2016) Maternal thyroid function in pregnancy may program offspring blood pressure, but not adiposity at 20 y of age. Pediatr Res 80:7–13PubMedCrossRefPubMedCentralGoogle Scholar
  52. Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413PubMedCrossRefPubMedCentralGoogle Scholar
  53. Skrzypiec-Spring M, Grotthus B, Szelag A, Schulz R (2007) Isolated heart perfusion according to Langendorff---still viable in the new millennium. J Pharmacol Toxicol Methods 55:113–126PubMedCrossRefPubMedCentralGoogle Scholar
  54. Song W, Kwak HB, Kim JH, Lawler JM (2009) Exercise training modulates the nitric oxide synthase profile in skeletal muscle from old rats. J Gerontol A Biol Sci Med Sci 64:540–549PubMedCrossRefPubMedCentralGoogle Scholar
  55. Tanaka S, Yashiro A, Nakashima Y, Nanri H, Ikeda M, Kuroiwa A (1997) Plasma nitrite/nitrate level is inversely correlated with plasma low-density lipoprotein cholesterol level. Clin Cardiol 20:361–365PubMedCrossRefPubMedCentralGoogle Scholar
  56. Teng W, Shan Z, Patil-Sisodia K, Cooper DS (2013) Hypothyroidism in pregnancy. Lancet Diabetes Endocrinol 1:228–237PubMedCrossRefPubMedCentralGoogle Scholar
  57. Vincent MA, Rodd C, Dussault JH, Van Vliet G (2002) Very low birth weight newborns do not need repeat screening for congenital hypothyroidism. J Pediatr 140:311–314PubMedCrossRefPubMedCentralGoogle Scholar
  58. Weinberg EO, Thienelt CD, Katz SE, Bartunek J, Tajima M, Rohrbach S, Douglas PS, Lorell BH (1999) Gender differences in molecular remodeling in pressure overload hypertrophy. J Am Coll Cardiol 34:264–273PubMedCrossRefPubMedCentralGoogle Scholar
  59. Xia R, Zhao B, Wu Y, Hou JB, Zhang L, Xu JJ, Xia ZY (2011) Ginsenoside Rb1 preconditioning enhances eNOS expression and attenuates myocardial ischemia/reperfusion injury in diabetic rats. J Biomed Biotechnol 2011:767930PubMedPubMedCentralCrossRefGoogle Scholar
  60. Yousefzadeh N, Jeddi S, Alipour MR (2016) Effect of fetal hypothyroidism on cardiac myosin heavy chain expression in male rats. Arq Bras Cardiol 107:147–153PubMedPubMedCentralGoogle Scholar
  61. Yousefzadeh N, Jeddi S, Ghiasi R, Alipour MR (2017) Effect of fetal hypothyroidism on MyomiR network and its target gene expression profiles in heart of offspring rats. Mol Cell Biochem 436:179–187PubMedCrossRefPubMedCentralGoogle Scholar
  62. Zaman J, Jeddi S, Daneshpour MS, Zarkesh M, Daneshian Z, Ghasemi A (2015) Ischemic postconditioning provides cardioprotective and antiapoptotic effects against ischemia-reperfusion injury through iNOS inhibition in hyperthyroid rats. Gene 570:185–190PubMedCrossRefPubMedCentralGoogle Scholar
  63. Zhang Y, Dedkov EI, Teplitsky D, Weltman NY, Pol CJ, Rajagopalan V, Lee B, Gerdes AM (2013) Both hypothyroidism and hyperthyroidism increase atrial fibrillation inducibility in rats. Circ Arrhythm Electrophysiol 6:952–959PubMedPubMedCentralCrossRefGoogle Scholar
  64. Zhong Y, Reiser PJ, Matlib MA (2003) Gender differences in myosin heavy chain-beta and phosphorylated phospholamban in diabetic rat hearts. Am J Physiol Heart Circ Physiol 285:H2688–H2693PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Endocrine Physiology Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Dezful University of Medical SciencesDezfulIran

Personalised recommendations