Advertisement

Influence of intranasal exposure of MPTP in multiple doses on liver functions and transition from non-motor to motor symptoms in a rat PD model

  • Indrani DattaEmail author
  • S. R. Mekha
  • Alka Kaushal
  • Kavina Ganapathy
  • Rema Razdan
Original Article

Abstract

Besides the effects on the striatum, the impairment of visceral organs including liver functions has been reported in Parkinson’s disease (PD) patients. However, it is yet unclear if liver functions are affected in the early stage of the disease before the motor phase has appeared. The aim of our present study was thus to assess the effect of intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in different doses on striatum and liver functions. Deterioration of non-motor activities appeared on single exposure to MPTP along with rise in striatum oxidative stress and decline in antioxidant levels. Decreases in dopamine, noradrenaline, and GABA and increase in serotonin were detected in striatum. Motor coordination was impaired with a single dose of MPTP, and with repeated MPTP exposure, there was further significant impairment. Locomotor activity was affected from second exposure of MPTP, and the impairment increased with third MPTP exposure. Impairment of liver function through increase in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels was observed after first MPTP insult, and it worsened with second and third administrations. First administration of MPTP triggered systemic inflammation showing significant increase in inflammatory markers in the liver. Our data shows for the first time that an intranasal route of entry of MPTP affects liver from the non-motor phase of PD itself, occurring concomitantly with the reduction of striatal dopamine. It also suggests that a single dose is not enough to bring about progression of the disease from non-motor to locomotor deficiency, and a repeated dose is needed to establish the motor severity phase in the rat intranasal MPTP model.

Keywords

Alanine aminotransferase MPTP model Parkinson’s disease Olfactory discrimination Non-motor symptoms Intranasal multiple doses of MPTP Liver function Aspartate-aminotransferase Alanine aminotransferase Oxidants and antioxidants in striatum Neurotransmitter levels in striatum Inflammatory marker expression in liver Chronic PD rat model 

Notes

Acknowledgements

We thank National Institute of Mental Health and Neurosciences and Al-Ameen College of Pharmacy for providing the basic infrastructure for conducting the study. We are grateful to Prof. Ramesh Bhonde for his valuable comments and Mr. A. Datta for his assistance in statistical analysis.

Authors’ contribution statement

Conceived and designed study—ID; execution and analysis of experiments—MSR, ID, AK, KG and RR; paper writing—ID; critical analysis and review of paper—ID and RR. All authors read and approved the manuscript.

Compliance with ethical standards

The ethical clearance for conducting the experiment was obtained from the Institutional animal ethical committee of Al-Ameen College of Pharmacy, Bengaluru under approval no.: AACP/IAEC/Dec2016/01. The laboratory animals were used in accordance with the ‘Guide for the Care and Use of Experimental Animals’ approved by the CPCSEA.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

210_2019_1715_Fig7_ESM.png (537 kb)
Supplementary figure 1

– (A) Dopamine estimation of MPTP group 1 rats versus control group at 7 days and 42 days post MPTP administration. (B&C) Olfactory function and motor co-ordination of MPTP group 1 rats and control rats till 42 days post MPTP administration of MPTP. Values are represented as mean ± SEM. **(P< 0.001) vs control. (PNG 536 kb)

210_2019_1715_MOESM1_ESM.tif (90 kb)
High resolution image (TIF 90 kb)

References

  1. Abolaji AO, Adedara AO, Adie MA, Vicente-Crespo M, Farombi EO (2018) Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative damage and behavioural deficits in Drosophila melanogaster. Biochem Biophys Res Commun 503:1042–1048.  https://doi.org/10.1016/j.bbrc.2018.06.114 CrossRefPubMedGoogle Scholar
  2. Agnihotri SK, Kesari KK (2019) Mechanistic effect of heavy metals in neurological disorder and brain cancer. In: Networking of mutagens in environmental toxicology. Springer, pp 25–47Google Scholar
  3. Alallan L, Agha MI, Omerein AN, Al Balkhi MH (2018) Anti-arthritic effects of Anchusa strigosa extracts on complete Freund’s adjuvant-induced arthritis in rats. Journal of Pharmacognosy and Phytochemistry 7(6):679–685Google Scholar
  4. Alam G, Edler M, Burchfield S, Richardson JR (2017) Single low doses of MPTP decrease tyrosine hydroxylase expression in the absence of overt neuron loss. Neurotoxicology 60:99–106 doi: S0161-813X(17)30059-1 [pii].  https://doi.org/10.1016/j.neuro.2017.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Andrews PW, Thomson JA Jr (2009) The bright side of being blue: depression as an adaptation for analyzing complex problems. Psychol Rev 116:620–654CrossRefPubMedPubMedCentralGoogle Scholar
  6. Andrews PW, Bharwani A, Lee KR, Fox M, Thomson JA Jr (2015 Apr) Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci Biobehav Rev 51:164–188.  https://doi.org/10.1016/j.neubiorev.2015.01.018 CrossRefPubMedGoogle Scholar
  7. Atiba AS, Abbiyesuku FM, Oparinde DP, ‘Niran-Atiba TA, Akindele RA. Plasma malondialdehyde (MDA): an indication of liver damage in women with pre-eclampsia. Ethiop J Health Sci 2016 Sep;26(5):479–486CrossRefPubMedPubMedCentralGoogle Scholar
  8. Baek H, Jang HI, Jeon HN, Bae H (2018a) Comparison of administration routes on the protective effects of bee venom phospholipase A2 in a mouse model of Parkinson’s disease. Front Aging Neurosci 10:179.  https://doi.org/10.3389/fnagi.2018.00179 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Baek SC, Lee HW, Ryu HW, Kang MG, Park D, Kim SH, Cho ML, Oh SR, Kim H (2018b) Selective inhibition of monoamine oxidase A by hispidol. Bioorg Med Chem Lett 28:584–588.  https://doi.org/10.1016/j.bmcl.2018.01.049 CrossRefPubMedGoogle Scholar
  10. Bazzu G et al (2010) Alpha-synuclein- and MPTP-generated rodent models of Parkinson’s disease and the study of extracellular striatal dopamine dynamics: a microdialysis approach. CNS Neurol Disord Drug Targets 9:482–490CrossRefPubMedGoogle Scholar
  11. Beck KD, Irwin I, Valverde J, Brennan TJ, Langston JW, Hefti F (1996) GDNF induces a dystonia-like state in neonatal rats and stimulates dopamine and serotonin synthesis. Neuron 16:665–673CrossRefPubMedGoogle Scholar
  12. Berghauzen-Maciejewska K, Kuter K, Kolasiewicz W, Glowacka U, Dziubina A, Ossowska K, Wardas J (2014) Pramipexole but not imipramine or fluoxetine reverses the “depressive-like” behaviour in a rat model of preclinical stages of Parkinson’s disease. Behav Brain Res 271:343–353.  https://doi.org/10.1016/j.bbr.2014.06.029 CrossRefPubMedGoogle Scholar
  13. Bergmeyer HU, Horder M, Rej R (1986a) International Federation of Clinical Chemistry (IFCC) Scientific Committee, Analytical Section: approved recommendation (1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 2. IFCC method for aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1). J Clin Chem Clin Biochem 24:497–510PubMedGoogle Scholar
  14. Bergmeyer HU, Horder M, Rej R (1986b) International Federation of Clinical Chemistry (IFCC) Scientific Committee, Analytical Section: approved recommendation (1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 3. IFCC method for alanine aminotransferase (L-alanine: 2-oxoglutarate aminotransferase, EC 2.6.1.2). J Clin Chem Clin Biochem 24:481–495PubMedGoogle Scholar
  15. Blesa J, Phani S, Jackson-Lewis V, Przedborski S (2012) Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012:845618–845610.  https://doi.org/10.1155/2012/845618 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bovi T, Antonini A, Ottaviani S, Antonioli A, Cecchini MP, di Francesco V, Bassetto MA, Zamboni M, Fiaschi A, Moretto G, Sbarbati A, Tinazzi M, Osculati F (2010) The status of olfactory function and the striatal dopaminergic system in drug-induced parkinsonism. J Neurol 257:1882–1889.  https://doi.org/10.1007/s00415-010-5631-3 CrossRefPubMedGoogle Scholar
  17. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134.  https://doi.org/10.1007/s00441-004-0956-9 CrossRefPubMedGoogle Scholar
  18. Bu XL, Wang X, Xiang Y, Shen LL, Wang QH, Liu YH, Jiao SS, Wang YR, Cao HY, Yi X, Liu CH, Deng B, Yao XQ, Xu ZQ, Zhou HD, Wang YJ (2015) The association between infectious burden and Parkinson’s disease: a case-control study. Parkinsonism Relat Disord 21:877–881.  https://doi.org/10.1016/j.parkreldis.2015.05.015 CrossRefPubMedGoogle Scholar
  19. Buhusi M, Brown CK, Buhusi CV (2017) Impaired latent inhibition in GDNF-deficient mice exposed to chronic stress. Front Behav Neurosci 11:177.  https://doi.org/10.3389/fnbeh.2017.00177 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci 80:4546–4550.  https://doi.org/10.1073/pnas.80.14.4546 CrossRefPubMedGoogle Scholar
  21. Campos FL, Carvalho MM, Cristovão AC, Je G, Baltazar G, Salgado AJ, Kim YS, Sousa N (2013) Rodent models of Parkinson’s disease: beyond the motor symptomatology. Front Behav Neurosci 7:175.  https://doi.org/10.3389/fnbeh.2013.00175 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Gould TD (2012) The mouse forced swim test. J Vis Exp:e3638.  https://doi.org/10.3791/3638
  23. Castro AA, Wiemes BP, Matheus FC, Lapa FR, Viola GG, Santos AR, Tasca CI, Prediger RD (2013) Atorvastatin improves cognitive, emotional and motor impairments induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats, an experimental model of Parkinson’s disease. Brain Res 1513:103–116.  https://doi.org/10.1016/j.brainres.2013.03.029 CrossRefPubMedGoogle Scholar
  24. Cetica P, Pintos L, Dalvit G, Beconi M (2003) Involvement of enzymes of amino acid metabolism and tricarboxylic acid cycle in bovine oocyte maturation in vitro. Reproduction 126:753–763CrossRefPubMedGoogle Scholar
  25. Chalansonnet M, Carabin N, Boucard S, Merlen L, Melczer M, Antoine G, Devoy J, Remy A, Gagnaire F (2018) Study of potential transfer of aluminum to the brain via the olfactory pathway. Toxicol Lett 283:77–85CrossRefPubMedGoogle Scholar
  26. Chao YX, He BP, Tay SSW (2009) Mesenchymal stem cell transplantation attenuates blood brain barrier damage and neuroinflammation and protects dopaminergic neurons against MPTP toxicity in the substantia nigra in a model of Parkinson’s disease. J Neuroimmunol 216:39–50.  https://doi.org/10.1016/j.jneuroim.2009.09.003 CrossRefPubMedGoogle Scholar
  27. Chaudhary S, Behari M, Dihana M, Swaminath PV, Govindappa ST, Jayaram S, Goyal V, Maitra A, Muthane UB, Juyal RC, Thelma BK (2006) Parkin mutations in familial and sporadic Parkinson’s disease among Indians. Parkinsonism Relat Disord 12:239–245.  https://doi.org/10.1016/j.parkreldis.2005.12.004 CrossRefPubMedGoogle Scholar
  28. Chung YC, Baek JY, Kim SR, Ko HW, Bok E, Shin WH, Won SY, Jin BK (2017) Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson’s disease. Exp Mol Med 49:e298.  https://doi.org/10.1038/emm.2016.159 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Cogun HY, Fırat O, Fırat O, Yüzereroǧlu TA, Gök G, Kargin F, Kötemen Y (2012 Mar) Protective effect of selenium against mercury-induced toxicity on hematological and biochemical parameters of Oreochromis niloticus. J Biochem Mol Toxicol 26(3):117–122.  https://doi.org/10.1002/jbt.20417 CrossRefPubMedGoogle Scholar
  30. Da Cunha C, Angelucci ME, Canteras NS, Wonnacott S, Takahashi RN (2002) The lesion of the rat substantia nigra pars compacta dopaminergic neurons as a model for Parkinson’s disease memory disabilities. Cell Mol Neurobiol 22:227–237Google Scholar
  31. Da Cunha C et al (2001) Memory disruption in rats with nigral lesions induced by MPTP: a model for early Parkinson’s disease amnesia. Behav Brain Res 124:9–18CrossRefPubMedGoogle Scholar
  32. Darracq L, Blanc G, Glowinski J, Tassin JP (1998) Importance of the noradrenaline-dopamine coupling in the locomotor activating effects of D-amphetamine. J Neurosci 18:2729–2739CrossRefPubMedGoogle Scholar
  33. Datta I, Mishra S, Mohanty L, Pulikkot S, Joshi PG (2011) Neuronal plasticity of human Wharton’s jelly mesenchymal stromal cells to the dopaminergic cell type compared with human bone marrow mesenchymal stromal cells. Cytotherapy 13:918–932.  https://doi.org/10.3109/14653249.2011.579957 CrossRefPubMedGoogle Scholar
  34. Delaville C, Deurwaerdere PD, Benazzouz A (2011) Noradrenaline and Parkinson’s disease. Front Syst Neurosci 5:31.  https://doi.org/10.3389/fnsys.2011.00031 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Dhingra D, Goswami S, Gahalain N (2018) Protective effect of hesperetin against haloperidol-induced orofacial dyskinesia and catalepsy in rats. Nutr Neurosci 21(9):667–675.  https://doi.org/10.1080/1028415X.2017.1338549 CrossRefPubMedGoogle Scholar
  36. Dhir A, Naidu PS, Kulkarni SK (2005) Protective effect of cyclooxygenase-2 (COX-2) inhibitors but not non-selective cyclooxygenase (COX)-inhibitors on ethanol withdrawal-induced behavioural changes. Addict Biol 10:329–335 doi: K3M3X45562456XHL [pii].  https://doi.org/10.1080/13556210500352964 CrossRefPubMedGoogle Scholar
  37. Diaz M, Luis-Amaro AC, Barreto DR, Casañas-Sánchez V, Pérez JA, Marin R (2019) Lipostatic mechanisms preserving cerebellar lipids in MPTP-treated mice: focus on membrane microdomains and lipid-related gene expression. Front Mol Neurosci 12Google Scholar
  38. Dick FD, de Palma G, Ahmadi A, Osborne A, Scott NW, Prescott GJ, Bennett J, Semple S, Dick S, Mozzoni P, Haites N, Wettinger SB, Mutti A, Otelea M, Seaton A, Soderkvist P, Felice A, on behalf of the Geoparkinson Study Group (2007) Gene-environment interactions in parkinsonism and Parkinson’s disease: the Geoparkinson study. Occup Environ Med 64:673–680.  https://doi.org/10.1136/oem.2006.032078 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Doty RL (2012) Olfaction in Parkinson’s disease and related disorders. Neurobiol Dis 46:527–552 doi: S0969-9961(11)00358-5 [pii].  https://doi.org/10.1016/j.nbd.2011.10.026 CrossRefPubMedGoogle Scholar
  40. Duty S, Jenner P (2011) Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 164(4):1357–1391.  https://doi.org/10.1111/j.1476-5381.2011.01426.x CrossRefPubMedPubMedCentralGoogle Scholar
  41. Dwarakanath V, Kumar N, Ravi Kumar AN, Goud BJ (2017) Defensive action of limonene on te induced BPH in male wistar rats. International Journal of Advanced Research in Engineering and Appl Sci 6(10):8–23Google Scholar
  42. El-Sayyad HI, El-Sherbiny MA, Sobh MA, Abou-El-Naga AM, Ibrahim MA, Mousa SA (2011) Protective effects of Morus alba leaves extract on ocular functions of pups from diabetic and hypercholesterolemic mother rats. Int J Biol Sci 7:715–728.  https://doi.org/10.7150/ijbs.7.715 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S (2018) Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull 143:155–170.  https://doi.org/10.1016/j.brainresbull.2018.10.009 CrossRefPubMedGoogle Scholar
  44. Fatima A, Khanam S, Rahul R, Jyoti S, Naz F, Ali F, Siddique YH (2017) Protective effect of tangeritin in transgenic Drosophila model of Parkinson’s disease. Front Biosci (Elite Ed) 9:44–53Google Scholar
  45. Fereshtehnejad SM, Yao C, Pelletier A, Montplaisir JY, Gagnon JF, Postuma RB (2019) Evolution of prodromal Parkinson’s disease and dementia with Lewy bodies: a prospective study. Brain 142:2051–2067.  https://doi.org/10.1093/brain/awz111 CrossRefPubMedGoogle Scholar
  46. Ferrari CC, Tarelli R (2011) Parkinson’s disease and systemic inflammation. Parkinsons Dis 2011:436813–436819.  https://doi.org/10.4061/2011/436813 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, Mameli F, Rosa M, Giannicola G, Zago S, Priori A (2013) Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum 12:485–492.  https://doi.org/10.1007/s12311-012-0436-9 CrossRefPubMedGoogle Scholar
  48. Frank-Cannon TC, Tran T, Ruhn KA, Martinez TN, Hong J, Marvin M, Hartley M, Trevino I, O’Brien DE, Casey B, Goldberg MS, Tansey MG (2008) Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J Neurosci 28:10825–10834.  https://doi.org/10.1523/JNEUROSCI.3001-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ganapathy K, Datta I, Sowmithra S, Joshi P, Bhonde R (2016) Influence of 6-hydroxydopamine toxicity on alpha-synuclein phosphorylation, resting vesicle expression, and vesicular dopamine release. J Cell Biochem 117:2719–2736.  https://doi.org/10.1002/jcb.25570 CrossRefPubMedGoogle Scholar
  50. Giannini EG, Testa R, Savarino V (2005) Liver enzyme alteration: a guide for clinicians. CMAJ 172:367–379.  https://doi.org/10.1503/cmaj.1040752 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Giovanni A, Sieber BA, Heikkila RE, Sonsalla PK (1994) Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 1: systemic administration. J Pharmacol Exp Ther 270:1000–1007PubMedGoogle Scholar
  52. Glasl L, Kloos K, Giesert F, Roethig A, di Benedetto B, Kühn R, Zhang J, Hafen U, Zerle J, Hofmann A, Hrabé de Angelis M, Winklhofer KF, Hölter SM, Vogt Weisenhorn DM, Wurst W (2012) Pink1-deficiency in mice impairs gait, olfaction and serotonergic innervation of the olfactory bulb. Exp Neurol 235:214–227.  https://doi.org/10.1016/j.expneurol.2012.01.002 CrossRefPubMedGoogle Scholar
  53. Godefroy D, Rostène W, Anouar Y, Reaux-Le Goazigo A (2019) Tyrosine-hydroxylase immunoreactivity in the mouse transparent brain and adrenal glands. J Neural Transm 126:367–375CrossRefPubMedGoogle Scholar
  54. Gowda S, Desai PB, Hull VV, Math AA, Vernekar SN, Kulkarni SS (2009) A review on laboratory liver function tests. Pan Afr Med J 3(17)Google Scholar
  55. Gracelyn Portia Anthony Doss * and Ramesh Francis (2019) Effect of Culcasia falcifolia on the biogenic amine levels in the brain tissue of pentylenetetrazole induced seizure in mice. GSC Biological and Pharmaceutical Sciences, 07(02), 001–006. DOI:  https://doi.org/10.30574/gscbps.2019.7.2.0062 CrossRefGoogle Scholar
  56. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138CrossRefPubMedGoogle Scholar
  57. Grosch J, Winkler J, Kohl Z (2016) Early degeneration of both dopaminergic and serotonergic axons - a common mechanism in Parkinson’s disease. Front Cell Neurosci 10:293.  https://doi.org/10.3389/fncel.2016.00293 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Gu L, Deng WS, Liu Y, Jiang CH, Sun LC, Sun XF, Xu Q, Zhou H. Ellagic acid protects Lipopolysaccharide/D-galactosamine-induced acute hepatic injury in mice. Int Immunopharmacol. 2014 Oct;22(2):341–5.  https://doi.org/10.1016/j.intimp.2014.07.005
  59. Gubellini P, Kachidian P (2015) Animal models of Parkinson’s disease: an updated overview. Rev Neurol (Paris) 171(11):750–761.  https://doi.org/10.1016/j.neurol.2015.07.011 CrossRefGoogle Scholar
  60. Hallman H, Lange L, Olson L, Strömberg I, Jonsson G (1985) Neurochemical and histochemical characterization of neurotoxic effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine on brain catecholamine neurones in the mouse. J Neurochem 44:117–127CrossRefPubMedGoogle Scholar
  61. Heiser C, Haller B, Sohn M, Hofauer B, Knopf A, Mühling T, Freiherr J, Bender M, Tiller M, Schmidt A, Schepp W, Gundling F (2018) Olfactory function is affected in patients with cirrhosis depending on the severity of hepatic encephalopathy. Ann Hepatol 17:822–829CrossRefPubMedGoogle Scholar
  62. Homi HM, Freitas JJ, Curi R, Velasco IT, Junior BA (2002) Changes in superoxide dismutase and catalase activities of rat brain regions during early global transient ischemia/reperfusion. Neurosci Lett 333:37–40CrossRefPubMedGoogle Scholar
  63. Huang X-J, Choi Y-K, Im H-S, Yarimaga O, Yoon E, Kim H-S (2006) Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors (Basel) 6:756–782CrossRefGoogle Scholar
  64. Huot P, Fox SH, Brotchie JM (2011) The serotonergic system in Parkinson’s disease. Prog Neurobiol 95:163–212.  https://doi.org/10.1016/j.pneurobio.2011.08.004 CrossRefPubMedGoogle Scholar
  65. Iannilli E, Stephan L, Hummel T, Reichmann H, Haehner A (2017) Olfactory impairment in Parkinson’s disease is a consequence of central nervous system decline. J Neurol 264:1236–1246.  https://doi.org/10.1007/s00415-017-8521-0 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ishikawa T, Okano M, Minami A, Tsunekawa H, Satoyoshi H, Tsukamoto Y, Takahata K, Muraoka S (2019) Selegiline ameliorates depression-like behaviors in rodents and modulates hippocampal dopaminergic transmission and synaptic plasticity. Behav Brain Res 359:353–361.  https://doi.org/10.1016/j.bbr.2018.10.032 CrossRefPubMedGoogle Scholar
  67. Jacobs SA, Huang F, Tsien JZ, Wei W (2016) Social recognition memory test in rodents. Bio-protocol 6:e1804.  https://doi.org/10.21769/BioProtoc.1804 CrossRefGoogle Scholar
  68. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. Journal of Neurology, Neurosurgery &amp; Psychiatry 79:368–376.  https://doi.org/10.1136/jnnp.2007.131045 CrossRefGoogle Scholar
  69. Javed H, Vaibhav K, Ahmed ME, Khan A, Tabassum R, Islam F, Safhi MM (2015) Effect of hesperidin on neurobehavioral, neuroinflammation, oxidative stress and lipid alteration in intracerebroventricular streptozotocin induced cognitive impairment in mice. J Neurol Sci 348:51–59.  https://doi.org/10.1016/j.jns.2014.10.044 CrossRefPubMedGoogle Scholar
  70. Jensen KJ, Alpini G, Glaser S (2013) Hepatic nervous system and neurobiology of the liver. Compr Physiol 3:655–665.  https://doi.org/10.1002/cphy.c120018 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Jia YF, Song NN, Mao RR, Li JN, Zhang Q, Huang Y, Zhang L, Han HL, Ding YQ, Xu L (2014) Abnormal anxiety- and depression-like behaviors in mice lacking both central serotonergic neurons and pancreatic islet cells. Front Behav Neurosci 8:325.  https://doi.org/10.3389/fnbeh.2014.00325 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Jumpponen M, Ronkkomaki H, Pasanen P, Laitinen J (2014) Occupational exposure to solid chemical agents in biomass-fired power plants and associated health effects. Chemosphere 104:25–31.  https://doi.org/10.1016/j.chemosphere.2013.10.025 CrossRefPubMedGoogle Scholar
  73. Kalaria RN, Mitchell MJ, Harik SI (1987) Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity. Proc Natl Acad Sci U S A 84:3521–3525CrossRefPubMedPubMedCentralGoogle Scholar
  74. Kang SJ, Scott WK, Li YJ, Hauser MA, van der Walt JM, Fujiwara K, Mayhew GM, West SG, Vance JM, Martin ER (2006) Family-based case–control study of MAOA and MAOB polymorphisms in Parkinson disease. Mov Disord 21:2175–2180.  https://doi.org/10.1002/mds.21151 CrossRefPubMedGoogle Scholar
  75. Kazi AI, Oommen A (2014) Chronic noise stress-induced alterations of glutamate and gamma-aminobutyric acid and their metabolism in the rat brain. Noise Health 16:343–349.  https://doi.org/10.4103/1463-1741.144394 CrossRefPubMedGoogle Scholar
  76. Kehr J, Yoshitake T, Ichinose F, Yoshitake S, Kiss B, Gyertyan I, Adham N (2018) Effects of cariprazine on extracellular levels of glutamate, GABA, dopamine, noradrenaline and serotonin in the medial prefrontal cortex in the rat phencyclidine model of schizophrenia studied by microdialysis and simultaneous recordings of locomotor activity. Psychopharmacology 235:1593–1607.  https://doi.org/10.1007/s00213-018-4874-z CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, Zahoor H, Saeed D, Natteru PA, Iyer S, Zaheer A (2017) Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci 11:216.  https://doi.org/10.3389/fncel.2017.00216 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Kerfoot SM, D’Mello C, Nguyen H, Ajuebor MN, Kubes P, Le T, Swain MG (2006) TNF-α–secreting monocytes are recruited into the brain of cholestatic mice. Hepatology 43:154–162.  https://doi.org/10.1002/hep.21003 CrossRefPubMedGoogle Scholar
  79. Khatri DK, Juvekar AR (2016) Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson’s disease. Pharmacol Biochem Behav 150-151:39–47.  https://doi.org/10.1016/j.pbb.2016.09.002 CrossRefPubMedGoogle Scholar
  80. Kołota A, Głąbska D, Oczkowski M, Gromadzka-Ostrowska J (2019) Influence of alcohol consumption on body mass gain and liver antioxidant defense in adolescent growing male rats. Int J Environ Res Public Health 16(13):2320CrossRefPubMedCentralGoogle Scholar
  81. Kurtenbach S, Wewering S, Hatt H, Neuhaus EM, Lubbert H (2013) Olfaction in three genetic and two MPTP-induced Parkinson’s disease mouse models. PLoS One 8:e77509CrossRefPubMedPubMedCentralGoogle Scholar
  82. Ladjimi MH, Barbouche R, Barka ZB, Vaudry D, Lefranc B, Leprince J, Troadec JD, Rhouma KB, Sakly M, Tebourbi O, Save E (2019) Comparison of the effects of PACAP-38 and its analog, acetyl-[Ala15, Ala20] PACAP-38-propylamide, on spatial memory, post-learning BDNF expression and oxidative stress in rat. Behav Brain Res 359:247–257CrossRefPubMedGoogle Scholar
  83. Langston JW (2017) The MPTP story. J Park Dis 7:S11–S19.  https://doi.org/10.3233/JPD-179006 CrossRefGoogle Scholar
  84. Lau YS, Meredith GE (2003) From drugs of abuse to parkinsonism. The MPTP mouse model of Parkinson’s disease. Methods Mol Med 79:103–116PubMedGoogle Scholar
  85. Le W, Zhang L, Xie W, Li S, Dani JA (2015) Pitx3 deficiency produces decreased dopamine signaling and induces motor deficits in Pitx3(−/−) mice. Neurobiol Aging 36:3314–3320.  https://doi.org/10.1016/j.neurobiolaging.2015.08.012 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Li Y, Zheng M, Sah SK, Mishra A, Singh Y (2019) Neuroprotective influence of sitagliptin against cisplatin-induced neurotoxicity, biochemical and behavioral alterations in Wistar rats. Mol Cell Biochem 455:91–97.  https://doi.org/10.1007/s11010-018-3472-z CrossRefPubMedGoogle Scholar
  87. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409.  https://doi.org/10.1038/70978 CrossRefPubMedGoogle Scholar
  88. Liu R, Young MT, Chen JC, Kaufman JD, Chen H (2016) Ambient air pollution exposures and risk of Parkinson disease. Environ Health Perspect 124:1759–1765.  https://doi.org/10.1289/EHP135 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  90. Lustig V, Papanastasiou-Diamandis A, Goldberg DM (1988) Evaluation of commercially formulated aspartate aminotransferase and alanine aminotransferase activity determinations by the Scandinavian Committee on Enzymes and IFCC methods as modified for use with automated enzyme analysers. Clin Biochem 21:283–290CrossRefPubMedGoogle Scholar
  91. Lv J, Xiao Q, Chen Y, Fan X, Liu X, Liu F, Luo G, Zhang B, Wang S (2017) Effects of magnesium isoglycyrrhizinate on AST, ALT, and serum levels of Th1 cytokines in patients with allo-HSCT. Int Immunopharmacol 46:56–61.  https://doi.org/10.1016/j.intimp.2017.02.022 CrossRefPubMedGoogle Scholar
  92. Madiha S, Haider S (2019) Curcumin restores rotenone induced depressive-like symptoms in animal model of neurotoxicity: assessment by social interaction test and sucrose preference test. Metab Brain Dis 34:297–308.  https://doi.org/10.1007/s11011-018-0352-x CrossRefPubMedGoogle Scholar
  93. Mandairon N, Peace S, Karnow A, Kim J, Ennis M, Linster C (2008) Noradrenergic modulation in the olfactory bulb influences spontaneous and reward-motivated discrimination, but not the formation of habituation memory. Eur J Neurosci 27:1210–1219.  https://doi.org/10.1111/j.1460-9568.2008.06101.x CrossRefPubMedGoogle Scholar
  94. Marques NF, Binder LB, Roversi K, Sampaio TB, Constantino LC, Prediger RD, Tasca CI (2019) Guanosine prevents depressive-like behaviors in rats following bilateral dorsolateral striatum lesion induced by 6-hydroxydopamine. Behav Brain Res 372:112014.  https://doi.org/10.1016/j.bbr.2019.112014 CrossRefPubMedGoogle Scholar
  95. Marques NF, Castro AA, Mancini G, Rocha FL, Santos ARS, Prediger RD, de Bem AF, Tasca CI (2018) Atorvastatin prevents early oxidative events and modulates inflammatory mediators in the striatum following intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats. Neurotox Res 33:549–559CrossRefPubMedGoogle Scholar
  96. Martínez-Sámano J, Flores-Poblano A, Verdugo-Díaz L, Juárez-Oropeza MA, Torres-Durán PV (2018 Dec) Extremely low frequency electromagnetic field exposure and restraint stress induce changes on the brain lipid profile of Wistar rats. BMC Neurosci 19(1):31CrossRefPubMedPubMedCentralGoogle Scholar
  97. Matheus FC, Rial D, Real JI, Lemos C, Takahashi RN, Bertoglio LJ, Cunha RA, Prediger RD (2016) Temporal dissociation of striatum and prefrontal cortex uncouples anhedonia and defense behaviors relevant to depression in 6-OHDA-lesioned rats. Mol Neurobiol 53:3891–3899.  https://doi.org/10.1007/s12035-015-9330-z CrossRefPubMedGoogle Scholar
  98. Matoba S, Bender K, Fahey AG, Mamo S, Brennan L, Lonergan P, Fair T (2014 Jan) Predictive value of bovine follicular components as markers of oocyte developmental potential. Reprod Fertil Dev 26(2):337–345.  https://doi.org/10.1071/RD13007 CrossRefPubMedGoogle Scholar
  99. Mennillo E, Cappelli F, Arukwe A (2019) Biotransformation and oxidative stress responses in rat hepatic cell-line (H4IIE) exposed to organophosphate esters (OPEs). Toxicol Appl Pharmacol 371:84–94.  https://doi.org/10.1016/j.taap.2019.04.004 CrossRefPubMedGoogle Scholar
  100. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175PubMedGoogle Scholar
  101. Miyanishi K, Choudhury ME, Watanabe M, Kubo M, Nomoto M, Yano H, Tanaka J (2019) Behavioral tests predicting striatal dopamine level in a rat hemi-Parkinson’s disease model. Neurochem Int 122:38–46.  https://doi.org/10.1016/j.neuint.2018.11.005 CrossRefPubMedGoogle Scholar
  102. Mizuno K, Ueno Y (2017) Autonomic nervous system and the liver. Hepatol Res 47:160–165.  https://doi.org/10.1111/hepr.12760 CrossRefPubMedGoogle Scholar
  103. Monville C, Torres EM, Dunnett SB (2006) Comparison of incremental and accelerating protocols of the rotarod test for the assessment of motor deficits in the 6-OHDA model. J Neurosci Methods 158:219–223 doi: S0165-0270(06)00289-5 [pii].  https://doi.org/10.1016/j.jneumeth.2006.06.001 CrossRefPubMedGoogle Scholar
  104. Moreira EL et al (2010) Proanthocyanidin-rich fraction from Croton celtidifolius Baill confers neuroprotection in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rat model of Parkinson’s disease. J Neural Transm (Vienna) 117:1337–1351.  https://doi.org/10.1007/s00702-010-0464-x CrossRefGoogle Scholar
  105. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta Gen Subj 582:67–78.  https://doi.org/10.1016/0304-4165(79)90289-7 CrossRefGoogle Scholar
  106. Munoz-Manchado AB et al (2016) Chronic and progressive Parkinson’s disease MPTP model in adult and aged mice. J Neurochem 136:373–387.  https://doi.org/10.1111/jnc.13409 CrossRefPubMedGoogle Scholar
  107. Niculescu DA, Dusceac R, Galoiu SA, Capatina CA, Poiana C (2016) Serial changes of liver function tests before and during methimazole treatment in thyrotoxic patients. Endocr Pract 22:974–979.  https://doi.org/10.4158/EP161222.OR CrossRefPubMedGoogle Scholar
  108. Nishitani N, Nagayasu K, Asaoka N, Yamashiro M, Andoh C, Nagai Y, Kinoshita H, Kawai H, Shibui N, Liu B, Hewinson J, Shirakawa H, Nakagawa T, Hashimoto H, Kasparov S, Kaneko S (2019) Manipulation of dorsal raphe serotonergic neurons modulates active coping to inescapable stress and anxiety-related behaviors in mice and rats. Neuropsychopharmacology 44:721–732.  https://doi.org/10.1038/s41386-018-0254-y CrossRefPubMedGoogle Scholar
  109. Noor NA, Mohammed HS, Mourad IM, Khadrawy YA, Aboul Ezz HS (2016) A promising therapeutic potential of cerebrolysin in 6-OHDA rat model of Parkinson’s disease. Life Sci 155:174–179.  https://doi.org/10.1016/j.lfs.2016.05.022 CrossRefPubMedGoogle Scholar
  110. Noremberg S, Bohrer D, Schetinger MR, Bairros AV, Gutierres J, Gonçalves JF, Veiga M, Santos FW (2016) Silicon reverses lipid peroxidation but not acetylcholinesterase activity induced by long-term exposure to low aluminum levels in rat brain regions. Biol Trace Elem Res 169(1):77–85CrossRefPubMedGoogle Scholar
  111. Normandin L, Ann Beaupré L, Salehi F, St -Pierre A, Kennedy G, Mergler D, Butterworth RF, Philippe S, Zayed J (2004) Manganese distribution in the brain and neurobehavioral changes following inhalation exposure of rats to three chemical forms of manganese. Neurotoxicology 25:433–441.  https://doi.org/10.1016/j.neuro.2003.10.001 CrossRefPubMedGoogle Scholar
  112. O’Hare JD, Zsombok A (2016) Brain-liver connections: role of the preautonomic PVN neurons. Am J Physiol Endocrinol Metab 310:E183–E189 doi:ajpendo.00302.2015 [pii].  https://doi.org/10.1152/ajpendo.00302.2015 CrossRefPubMedGoogle Scholar
  113. O’Neal SL, Lee JW, Zheng W, Cannon JR (2014) Subacute manganese exposure in rats is a neurochemical model of early manganese toxicity. Neurotoxicology 44:303–313.  https://doi.org/10.1016/j.neuro.2014.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Ordonez-Librado JL, Anaya-Martinez V, Gutierrez-Valdez AL, Colin-Barenque L, Montiel-Flores E, Avila-Costa MR (2010) Manganese inhalation as a Parkinson disease model. Parkinsons Dis 2011:612989–612914.  https://doi.org/10.4061/2011/612989 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Petty F, Kramer G, Wilson L, Jordan S (1994) In vivo serotonin release and learned helplessness. Psychiatry Res 52:285–293CrossRefPubMedGoogle Scholar
  116. Politis M, Loane C (2011) Serotonergic dysfunction in Parkinson’s disease and its relevance to disability. ScientificWorldJournal 11:1726–1734.  https://doi.org/10.1100/2011/172893 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Pont-Sunyer C, Hotter A, Gaig C, Seppi K, Compta Y, Katzenschlager R, Mas N, Hofeneder D, Brücke T, Bayés A, Wenzel K, Infante J, Zach H, Pirker W, Posada IJ, Álvarez R, Ispierto L, de Fàbregues O, Callén A, Palasí A, Aguilar M, Martí MJ, Valldeoriola F, Salamero M, Poewe W, Tolosa E (2015) The onset of nonmotor symptoms in Parkinson’s disease (the ONSET PD study). Mov Disord 30:229–237.  https://doi.org/10.1002/mds.26077 CrossRefPubMedGoogle Scholar
  118. Porras G, Li Q, Bezard E (2012) Modeling Parkinson’s disease in primates: the MPTP model. Cold Spring Harb Perspect Med 2:a009308.  https://doi.org/10.1101/cshperspect.a009308 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Prediger RD et al (2011) The intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a new rodent model to test palliative and neuroprotective agents for Parkinson’s disease. Curr Pharm Des 17:489–507CrossRefPubMedGoogle Scholar
  120. Prediger RD, Rial D, Medeiros R, Figueiredo CP, Doty RL, Takahashi RN (2009) Risk is in the air: an intranasal MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) rat model of Parkinson’s disease. Ann N Y Acad Sci 1170:629–636.  https://doi.org/10.1111/j.1749-6632.2009.03885.x CrossRefPubMedGoogle Scholar
  121. Prediger RDS, Batista LC, Medeiros R, Pandolfo P, Florio JC, Takahashi RN (2006) The risk is in the air: intranasal administration of MPTP to rats reproducing clinical features of Parkinson’s disease. Exp Neurol 202:391–403.  https://doi.org/10.1016/j.expneurol.2006.07.001 CrossRefPubMedGoogle Scholar
  122. Ramsey CP, Tansey MG (2014) A survey from 2012 of evidence for the role of neuroinflammation in neurotoxin animal models of Parkinson’s disease and potential molecular targets. Exp Neurol 256:126–132 doi: S0014-4886(13)00160-X [pii].  https://doi.org/10.1016/j.expneurol.2013.05.014 CrossRefPubMedGoogle Scholar
  123. Reichmann H (2017) Premotor diagnosis of Parkinson’s disease. Neurosci Bull 33:526–534.  https://doi.org/10.1007/s12264-017-0159-5 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Requejo-Aguilar R, Bolanos JP (2016) Mitochondrial control of cell bioenergetics in Parkinson’s disease. Free Radic Biol Med 100:123–137 doi: S0891-5849(16)30030-2 [pii].  https://doi.org/10.1016/j.freeradbiomed.2016.04.012 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Retnasamy G, Adikay S (2016) Evaluation of anti-obesity activity of Thespesia populnea (L.) and flavonoid isolated quercetin on high fat diet–induced obese rats. Journal of Experimental and Applied Animal Sciences. 2(1):46–58CrossRefGoogle Scholar
  126. Riachi NJ, Harik SI, Kalaria RN, Sayre LM (1988) On the mechanisms underlying 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. II. Susceptibility among mammalian species correlates with the toxin’s metabolic patterns in brain microvessels and liver. J Pharmacol Exp Ther 244:443–448PubMedGoogle Scholar
  127. Ricaurte GA, Langston JW, Delanney LE, Irwin I, Peroutka SJ, Forno LS (1986) Fate of nigrostriatal neurons in young mature mice given 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: a neurochemical and morphological reassessment. Brain Res 376:117–124.  https://doi.org/10.1016/0006-8993(86)90905-4 CrossRefPubMedGoogle Scholar
  128. Rodriguez S, Uchida K, Nakayama H (2013) Immunohistochemical changes of nigrostriatal tyrosine hydroxylase and dopamine transporter in the golden hamster after a single intrastriatal injection of 6-hydroxydopamine. Exp Toxicol Pathol 65:463–468.  https://doi.org/10.1016/j.etp.2012.01.005 CrossRefPubMedGoogle Scholar
  129. Rojo AI, Montero C, Salazar M, Close RM, Fernández-Ruiz J, Sánchez-González MA, de Sagarra MR, Jackson-Lewis V, Cavada C, Cuadrado A (2006) Persistent penetration of MPTP through the nasal route induces Parkinson’s disease in mice. Eur J Neurosci 24:1874–1884.  https://doi.org/10.1111/j.1460-9568.2006.05060.x CrossRefPubMedGoogle Scholar
  130. Ross GW, Petrovitch H, Abbott RD, Tanner CM, Popper J, Masaki K, Launer L, White LR (2008) Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann Neurol 63:167–173.  https://doi.org/10.1002/ana.21291 CrossRefPubMedGoogle Scholar
  131. Ryu EJ, Angelastro JM, Greene LA (2005) Analysis of gene expression changes in a cellular model of Parkinson disease. Neurobiol Dis 18:54–74.  https://doi.org/10.1016/j.nbd.2004.08.016 CrossRefPubMedGoogle Scholar
  132. Santiago RM, Barbieiro J, Lima MM, Dombrowski PA, Andreatini R, Vital MA (2010) Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson’s disease are predominantly associated with serotonin and dopamine. Prog Neuro-Psychopharmacol Biol Psychiatry 34:1104–1114.  https://doi.org/10.1016/j.pnpbp.2010.06.004 CrossRefGoogle Scholar
  133. Schlumpf M, Lichtensteiger W, Langemann H, Waser PG, Hefti F (1974) A fluorometric micromethod for the simultaneous determination of serotonin, noradrenaline and dopamine in milligram amounts of brain tissue. Biochem Pharmacol 23:2437–2446CrossRefPubMedGoogle Scholar
  134. Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911CrossRefPubMedGoogle Scholar
  135. Selvakumar GP, Manivasagam T, Rekha KR, Jayaraj RL, Elangovan N (2015) Escin, a novel triterpene, mitigates chronic MPTP/p-induced dopaminergic toxicity by attenuating mitochondrial dysfunction, oxidative stress, and apoptosis. J Mol Neurosci 55:184–197.  https://doi.org/10.1007/s12031-014-0303-x CrossRefPubMedGoogle Scholar
  136. Sharma K, Parle M (2017) Methanol extract of Artocarpus heterophyllus attenuates pentylenetetrazole induced anxiety like behaviours in mice. Journal of Medicinal Plants 5(1):181–186Google Scholar
  137. Shishido T, Nagano Y, Araki M, Kurashige T, Obayashi H, Nakamura T, Takahashi T, Matsumoto M, Maruyama H (2019) Synphilin-1 has neuroprotective effects on MPP+-induced Parkinson’s disease model cells by inhibiting ROS production and apoptosis. Neurosci Lett 690:145–150CrossRefPubMedGoogle Scholar
  138. Simões-Alves AC, Costa-Silva JH, Barros-Junior IB, da Silva Filho RC, Vasconcelos DA, Vidal H, Morio B, Fernandes MP (2019 Apr) Saturated fatty acid-enriched diet-impaired mitochondrial bioenergetics in liver from undernourished rats during critical periods of development. Cells. 8(4):335CrossRefPubMedCentralGoogle Scholar
  139. Singh M, Sulaimankutty RK, Dine K, Das Sarma J, Shindler KS (2018) Intracranial inoculation is more potent than intranasal inoculation for inducing optic neuritis in the mouse hepatitis virus-induced model of multiple sclerosis. Front Cell Infect Microbiol 8:311CrossRefPubMedPubMedCentralGoogle Scholar
  140. Sitte HH, Pifl C, Rajput AH, Hörtnagl H, Tong J, Lloyd GK, Kish SJ, Hornykiewicz O (2017) Dopamine and noradrenaline, but not serotonin, in the human claustrum are greatly reduced in patients with Parkinson’s disease: possible functional implications. Eur J Neurosci 45:192–197.  https://doi.org/10.1111/ejn.13435 CrossRefPubMedGoogle Scholar
  141. Slater T, Sawyer B (1971) The stimulatory effects of carbon tetrachloride and other halogenoalkanes on peroxidative reactions in rat liver fractions in vitro. General features of the systems used. Biochem J 123:805–814CrossRefPubMedPubMedCentralGoogle Scholar
  142. Squitti R, Gorgone G, Panetta V, Lucchini R, Bucossi S, Albini E, Alessio L, Alberici A, Melgari JM, Benussi L, Binetti G, Rossini PM, Draicchio F (2009) Implications of metal exposure and liver function in Parkinsonian patients resident in the vicinities of ferroalloy plants. J Neural Transm 116:1281–1287CrossRefPubMedGoogle Scholar
  143. Stojkovska I, Wagner BM, Morrison BE (2015) Parkinson’s disease and enhanced inflammatory response. Exp Biol Med (Maywood) 240:1387–1395.  https://doi.org/10.1177/1535370215576313 CrossRefGoogle Scholar
  144. Subban K, Subramani R, Srinivasan VPM, Johnpaul M, Chelliah J (2019) Salicylic acid as an effective elicitor for improved taxol production in endophytic fungus Pestalotiopsis microspora. PLoS One 14:e0212736–e0212736.  https://doi.org/10.1371/journal.pone.0212736 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Sui X, Zhou C, Li J, Chen L, Yang X, Li F (2019) Hyposmia as a predictive marker of Parkinson’s disease: a systematic review and meta-analysis. Biomed Res Int 2019:3753786.  https://doi.org/10.1155/2019/3753786 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Tadaiesky MT, Dombrowski PA, Figueiredo CP, Cargnin-Ferreira E, Da Cunha C, Takahashi RN (2008) Emotional, cognitive and neurochemical alterations in a premotor stage model of Parkinson’s disease. Neuroscience 156:830–840 doi:  https://doi.org/10.1016/j.neuroscience.2008.08.035
  147. Tanner CM (1991) Liver enzyme abnormalities in Parkinson’s disease. Geriatrics 46(Suppl 1):60–63PubMedGoogle Scholar
  148. Tian Y, Chen C, Guo S, Zhao L, Yan Y (2018) Exploration of the establishment of manganese poisoning rat model and analysis of discriminant methods. Toxicology 410:193–198CrossRefPubMedGoogle Scholar
  149. Titova N, Qamar MA, Chaudhuri KR (2017) The nonmotor features of Parkinson’s disease. Int Rev Neurobiol 132:33–54.  https://doi.org/10.1016/bs.irn.2017.02.016 CrossRefPubMedGoogle Scholar
  150. Tong GF, Qin N, Sun LW (2017) Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery. Saudi Pharm J 25(6):844–851.  https://doi.org/10.1016/j.jsps.2016.12.003 CrossRefPubMedGoogle Scholar
  151. Toomey JS, Bhatia S, Moon L’WT, Orchard EA, Tainter KH, Lokitz SJ, Terry T, Mathis JM, Penman AD (2012) PET imaging a MPTP-induced mouse model of Parkinson’s disease using the fluoropropyl-dihydrotetrabenazine analog [18F]-DTBZ (AV-133). PLoS One 7:e39041.  https://doi.org/10.1371/journal.pone.0039041 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Toro R, Downward GS, van der Mark M, Brouwer M, Huss A, Peters S, Hoek G, Nijssen P, Mulleners WM, Sas A, van Laar T, Kromhout H, Vermeulen R (2019) Parkinson’s disease and long-term exposure to outdoor air pollution: a matched case-control study in the Netherlands. Environ Int 129:28–34.  https://doi.org/10.1016/j.envint.2019.04.069 CrossRefPubMedGoogle Scholar
  153. Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm (Vienna) 124:901–905.  https://doi.org/10.1007/s00702-017-1686-y CrossRefGoogle Scholar
  154. Uyama N, Geerts A, Reynaert H (2004) Neural connections between the hypothalamus and the liver. Anat Rec A Discov Mol Cell Evol Biol 280:808–820.  https://doi.org/10.1002/ar.a.20086 CrossRefPubMedGoogle Scholar
  155. Vaglini F, Viaggi C, Piro V, Pardini C, Gerace C, Scarselli M, Corsini GU (2013) Acetaldehyde and parkinsonism: role of CYP450 2E1. Front Behav Neurosci 7:71.  https://doi.org/10.3389/fnbeh.2013.00071 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Vairetti M, Ferrigno A, Rizzo V, Ambrosi G, Bianchi A, Richelmi P, Blandini F, Armentero MT (2012) Impaired hepatic function and central dopaminergic denervation in a rodent model of Parkinson’s disease: a self-perpetuating crosstalk? Biochim Biophys Acta (BBA) - Mol Basis Dis 1822:176–184.  https://doi.org/10.1016/j.bbadis.2011.11.008 CrossRefGoogle Scholar
  157. van den Berg MP, Romeijn SG, Verhoef JC, Merkus FW (2002) Serial cerebrospinal fluid sampling in a rat model to study drug uptake from the nasal cavity. J Neurosci Methods 116:99–107CrossRefPubMedGoogle Scholar
  158. Vegas-Suarez S, Paredes-Rodriguez E, Aristieta A, Lafuente JV, Miguelez C, Ugedo L (2019) Dysfunction of serotonergic neurons in Parkinson’s disease and dyskinesia. Int Rev Neurobiol 146:259–279.  https://doi.org/10.1016/bs.irn.2019.06.013 CrossRefPubMedGoogle Scholar
  159. Versace V, Langthaler PB, Sebastianelli L, Höller Y, Brigo F, Orioli A, Saltuari L, Nardone R (2017) Impaired cholinergic transmission in patients with Parkinson’s disease and olfactory dysfunction. J Neurol Sci 377:55–61.  https://doi.org/10.1016/j.jns.2017.03.049 CrossRefPubMedGoogle Scholar
  160. Wojcikowski J, Daniel WA (2008) Identification of factors mediating the effect of the brain dopaminergic system on the expression of cytochrome P450 in the liver. Pharmacol Rep 60:966–971PubMedGoogle Scholar
  161. Wojcikowski J, Daniel WA (2009) The brain dopaminergic system as an important center regulating liver cytochrome P450 in the rat. Expert Opin Drug Metab Toxicol 5:631–645.  https://doi.org/10.1517/17425250902973703 CrossRefPubMedGoogle Scholar
  162. Wojcikowski J, Golembiowska K, Daniel WA (2007) The regulation of liver cytochrome p450 by the brain dopaminergic system. Curr Drug Metab 8:631–638CrossRefPubMedGoogle Scholar
  163. Wong LS, Eshel G, Dreher J, Ong J, Jackson DM (1991) Role of dopamine and GABA in the control of motor activity elicited from the rat nucleus accumbens. Pharmacol Biochem Behav 38:829–835.  https://doi.org/10.1016/0091-3057(91)90250-6 CrossRefPubMedGoogle Scholar
  164. Wu D, Wu C, Ma W, Wang Z, Yu C, Du M (2019) Effects of ultrasound treatment on the physicochemical and emulsifying properties of proteins from scallops (Chlamys farreri). Food Hydrocoll 89:707–714CrossRefGoogle Scholar
  165. Yadav M, Parle M, Sharma N, Dhingra S, Raina N, Jindal DK (2017) Brain targeted oral delivery of doxycycline hydrochloride encapsulated Tween 80 coated chitosan nanoparticles against ketamine induced psychosis: behavioral, biochemical, neurochemical and histological alterations in mice. DrugDelivery 24(1):1429–1440Google Scholar
  166. Yadav M, Parle M, Sharma N, Jindal DK, Bhidhasra A, Dhingra MS, Kumar A, Dhingra S (2018) Protective effects of Spinacia oleracea seeds extract in an experimental model of schizophrenia: possible behavior, biochemical, neurochemical and cellular alterations. Biomed Pharmacother 105:1015–1025.  https://doi.org/10.1016/j.biopha.2018.06.043 CrossRefPubMedGoogle Scholar
  167. Yankelevitch-Yahav R, Franko M, Huly A, Doron R (2015) The forced swim test as a model of depressive-like behavior. J Vis Exp.  https://doi.org/10.3791/52587
  168. Yoo DY, Cho SB, Jung HY, Kim W, Lee KY, Kim JW, Moon SM, Won MH, Choi JH, Yoon YS, Kim DW, Choi SY, Hwang IK (2019) Protein disulfide-isomerase A3 significantly reduces ischemia-induced damage by reducing oxidative and endoplasmic reticulum stress. Neurochem Int 122:19–30CrossRefPubMedGoogle Scholar
  169. Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309CrossRefPubMedGoogle Scholar
  170. Zahniser NR, Sorkin A (2004) Rapid regulation of the dopamine transporter: role in stimulant addiction? Neuropharmacology 47:80–91.  https://doi.org/10.1016/j.neuropharm.2004.07.010 CrossRefPubMedGoogle Scholar
  171. Zangen A, Overstreet DH, Yadid G (1997) High serotonin and 5-hydroxyindoleacetic acid levels in limbic brain regions in a rat model of depression: normalization by chronic antidepressant treatment. J Neurochem 69:2477–2483CrossRefPubMedGoogle Scholar
  172. Zatta P, Favarato M, Nicolini M (1993) Deposition of aluminum in brain tissues of rats exposed to inhalation of aluminum acetylacetonate. Neuroreport 4:1119–1122PubMedGoogle Scholar
  173. Zeng XS, Geng WS, Jia JJ (2018) Neurotoxin-induced animal models of Parkinson disease: pathogenic mechanism and assessment. ASN Neuro 10:1759091418777438.  https://doi.org/10.1177/1759091418777438 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Zesiewicz TA, Sullivan KL, Hauser RA (2006) Nonmotor symptoms of Parkinson’s disease. Expert Rev Neurother 6:1811–1822.  https://doi.org/10.1586/14737175.6.12.1811 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiophysicsNational Institute of Mental Health and NeurosciencesBengaluruIndia
  2. 2.Department of PharmacologyAl-Ameen College of PharmacyBengaluruIndia

Personalised recommendations