Skip to main content

Advertisement

Log in

Effects of cholecalciferol on behavior and production of reactive oxygen species in female mice subjected to corticosterone-induced model of depression

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Major depressive disorder (or depression) is one of the most frequent psychiatric illnesses in the population, with chronic stress being one of the main etiological factors. Studies have shown that cholecalciferol supplementation can lead to attenuation of the depressive state; however, the biochemical mechanisms involved in the relationship between cholecalciferol and depression are not very well known. The objective of this study was to investigate the effects of the administration of cholecalciferol on behavioral parameters (tail suspension test (TST), open field test (OFT), splash test (ST)) and redox state (dichlorofluorescein (DCF)) in adult female Swiss mice subjected to a model of depression induced by chronic corticosterone treatment. Corticosterone (20 mg/kg, p.o.) was administered once a day for 21 days. For investigation of the antidepressant-like effect, cholecalciferol (100 IU/kg) or fluoxetine (10 mg/kg, positive control) was administered p.o. within the last 7 days of corticosterone administration. After the treatments, the behavioral tests and biochemical analyses in the hippocampus and prefrontal cortex of the rodent samples were performed. Animals submitted to repeated corticosterone administration showed a depressive-like behavior, evidenced by a significant increase in the immobility time in the TST, which was significantly reduced by the administration of cholecalciferol or fluoxetine. In addition, the groups treated with cholecalciferol and fluoxetine showed a significant decrease in the production of reactive oxygen species (ROS) in the hippocampus. These results show that cholecalciferol, similar to fluoxetine, has a potential antidepressant-like effect, which may be related to the lower ROS production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DCF:

Dichlorofluorescein

DCFH:

2,7 Dichlorofluorescein

DMSO:

Dimethylsulfoxide

ROS:

Reactive oxygen species

HPA:

Hypothalamic-pituitary-adrenal

NADPH:

Nicotinamide adenine dinucleotide phosphate

OFT:

Open field test

ST:

Splash test

TNF:

Forced swim test

TST:

Tail suspension test

VDR:

Vitamin D receptor

References

  • Alekhya P, Sriharsha M, Ramudu VR et al (2015) Adherence to antidepressant therapy: sociodemographic factor wise distribution. Int J Pharm Clin Res 7:180–184

    Google Scholar 

  • Alrefaie Z, Alhayani A (2015) Vitamin D improves decline in cognitive function and cholinergic transmission in prefrontal cortex of streptozotocin-induced diabetic rats. Behav Brain Res 287:156–162

    Article  CAS  PubMed  Google Scholar 

  • Anglin RE, Samaan Z, Walter SD, McDonald SD (2013) Vitamin D deficiency and depression in adults: systematic review and meta-analysis. Br J Psychiatry 202:100–107

    Article  PubMed  Google Scholar 

  • Balcombe JP, Barnard ND, Sandusky C (2004) Laboratory routines cause animal stress. Contemp Top Lab Anim Sci 43:42–51

    CAS  PubMed  Google Scholar 

  • Bet PM, Hugtenburg JG, Penninx BW, Hoogendijk WJ (2013) Side effects of antidepressants during long-term use in a naturalistic setting. Eur Neuropsychopharmacol 23:1443–1451

    Article  CAS  PubMed  Google Scholar 

  • Beyer JL, Payne ME (2016) Nutrition and bipolar depression. Psychiatr Clin North Am 39:75–86

    Article  PubMed  Google Scholar 

  • Brouwer-Brolsma EM, Dhonukshe-Rutten RA, Van Wijngaarden JP et al (2016) Low vitamin D status is associated with more depressive symptoms in Dutch older adults. Eur J Nutr 55:1525–1534

    Article  CAS  PubMed  Google Scholar 

  • Camargo A, Dalmagro AP, Rikel L, da Silva EB, Simão da Silva KAB, Zeni ALB (2018) Cholecalciferol counteracts depressive-like behavior and oxidative stress induced by repeated corticosterone treatment in mice. Eur J Pharmacol 833:451–461

    Article  CAS  PubMed  Google Scholar 

  • Casseb GAS, Kaster MP, Rodrigues ALS (2019) Potential role of vitamin D for the management of depression and anxiety. CNS Drugs 33:619–637

    Article  CAS  PubMed  Google Scholar 

  • Chen KB, Lin AM, Chiu TH (2003) Systemic vitamin D3 attenuated oxidative injuries in the locus coeruleus of rat brain. Ann N Y Acad Sci 993:313–249

    Article  CAS  PubMed  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems and apoptosis. Sciences (New York) 48:749–762

    CAS  Google Scholar 

  • Cui C, Song S, Cui J, Feng Y, Gao J, Jiang P (2017) Vitamin D receptor activation influences NADPH oxidase (NOX2) activity and protects against neurological deficits and apoptosis in a rat model of traumatic brain injury. Oxidative Med Cell Longev 2017:9245702

    Google Scholar 

  • Curtis KS, Davis LM, Johnson AL, Therrien KL, Contreras RJ (2004) Sex differences in behavioral taste responses to and ingestion of sucrose and NaCl solutions by rats. Physiol Behav 80:657–664

    Article  CAS  PubMed  Google Scholar 

  • Erbaş O, Solmaz V, Aksoy D, Yavaşoğlu A, Sağcan M, Taşkıran D (2014) Cholecalciferol (vitamin D 3) improves cognitive dysfunction and reduces inflammation in a rat fatty liver model of metabolic syndrome. Life Sci 103:68–72

    Article  PubMed  CAS  Google Scholar 

  • Eyles DW, Burne TH, McGrath JJ (2013) Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol 34:47–64

    Article  CAS  PubMed  Google Scholar 

  • Fedotova J, Dudnichenko T, Kruzliak P, Puchavskaya Z (2016) Different effects of vitamin D hormone treatment on depression-like behavior in the adult ovariectomized female rats. Biomed Pharmacother 84:1865–1872

    Article  CAS  PubMed  Google Scholar 

  • Gupta D, Radhakrishnan M, Kurhe Y (2015) Effect of a novel 5-HT 3 receptor antagonist 4i , in corticosterone-induced depression-like behavior and oxidative stress in mice. Steroids 96:95–102

    Article  CAS  PubMed  Google Scholar 

  • Hallgren M, Stubbs B, Vancampfort D, Lundin A, Jääkallio P, Forsell Y (2017) Treatment guidelines for depression: greater emphasis on physical activity is needed. Eur Psychiatry 40:1–3

    Article  CAS  PubMed  Google Scholar 

  • Han C, Lim YH, Honget YC (2016) The association between oxidative stress and depressive symptom scores in elderly population : a repeated panel study. J Prev Med Public Health 49:260–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Hempel SL, Buettner GR, O'Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting. Free Radic Biol Med 27:146–159

    Article  CAS  PubMed  Google Scholar 

  • Ibi M, Sawada H, Nakanishi M, Kume T, Katsuki H, Kaneko S, Shimohama S, Akaike A (2001) Protective effects of 1α,25–(OH)2D3 against the neurotoxicity of glutamate and reactive oxygen species in mesencephalic culture. Neuropharmacology 40:761–771

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Maren S (2015) Prefrontal-hippocampal interactions in memory and emotion. Front Syst Neurosci 9:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Joseph JJ, Golden SH (2016) Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann N Y Acad Sci 1391:20-34

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalueff AV, Lou YR, Laaksi I, Tuohimaa P (2004) Increased grooming behavior in mice lacking vitamin D receptors. Physiol Behav 82:405–409

    Article  CAS  PubMed  Google Scholar 

  • Khawam EA, Laurencic G, Malone DA Jr (2006) Side effects of antidepressants: an overview. Cleve Clin J Med 73:1–9

    Article  Google Scholar 

  • Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24:325–340

    Article  PubMed  PubMed Central  Google Scholar 

  • Lardner AL (2015) Vitamin D and hippocampal development-the story so far. Front Mol Neurosci 8:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu T, Zhong S, Liao X, Chen J, He T, Lai S, Jia Y (2015) A meta-analysis of oxidative stress markers in depression. PLoS One 10:1–17

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folinphenol reagent. J Biol Chem 193:265–267

    Article  CAS  PubMed  Google Scholar 

  • Lucca G, Comim CM, Valvassori SS, Réus GZ, Vuolo F, Petronilho F, Dal-Pizzol F, Gavioli EC, Quevedo J (2009) Effects of chronic mild stress on the oxidative parameters in the rat brain. Neurochem Int 54:358–362

    Article  CAS  PubMed  Google Scholar 

  • Manna P, Achari AE, Jain SK (2017) Vitamin D supplementation inhibits oxidative stress and upregulate SIRT1/AMPK/GLUT4 cascade in high glucose-treated 3T3L1 adipocytes and in adipose tissue of high fat diet-fed diabetic mice. Arch Biochem Biophys 615:22–34

    Article  CAS  PubMed  Google Scholar 

  • Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD (2016) The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: a mini review. Oxidative Med Cell Longev 2016:1–15

    Article  CAS  Google Scholar 

  • Manosso LM, Moretti M, Rodrigues ALS (2013) Nutritional strategies for dealing with depression. Food Funct 4:1776–1793

    Article  CAS  PubMed  Google Scholar 

  • Maurya PK, Noto C, Rizzo LB, Rios AC, Nunes SO, Barbosa DS et al (2016) The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 65:134–144

    Article  CAS  Google Scholar 

  • Moniczewski A, Gawlik M, Smaga I, Niedzielska E, Krzek J, Przegaliński E, Pera J, Filip M (2015) Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 1. Chemical aspects and biological sources of oxidative stress in the brain. Pharmacol Rep 67:560–568

    Article  CAS  PubMed  Google Scholar 

  • Moretti M, Colla A, de Oliveira BG, dos Santos DB, Budni J, de Freitas AE, Farina M, Rodrigues ALS (2012) Ascorbic acid treatment, similarly to fluoxetine, reverses depressive-like behavior and brain oxidative damage induced by chronic unpredictable stress. J Psychiatr Res 46:331–340

    Article  PubMed  Google Scholar 

  • Moretti M, Budni J, Dos Santos DB, Antunes A, Daufenbach JF, Manosso LM, Farina M, Rodrigues ALS (2013) Protective effects of ascorbic acid on behavior and oxidative status of restraint-stressed mice. J Mol Neurosci 46:68–79

    Article  PubMed  CAS  Google Scholar 

  • Morimoto M, Morita N, Ozawa H, Yokoyama K, Kawata M (1996) Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study. Neurosci Res 26(3):235–269

    Article  CAS  PubMed  Google Scholar 

  • Mozaffari-Khosravi H, Nabizade L, Yassini-Ardakani SM, Hadinedoushan H, Barzegar K (2013) The effect of 2 different single injections of high dose of vitamin D on improving the depression in depressed patients with vitamin D deficiency: a randomized clinical trial. J Clin Psychopharmacol 33:378–385

    Article  CAS  PubMed  Google Scholar 

  • Mpandzou G, Aït Ben Haddou E, Regragui W, Benomar A, Yahyaoui M (2016) Vitamin D deficiency and its role in neurological conditions: a review. Rev Neurol (Paris) 172:109–22

    Article  CAS  PubMed  Google Scholar 

  • Olescowicz G, Neis VB, Fraga DB, Rosa PB, Azevedo DP, Melleu FF, Brocardo PS, Gil-Mohapel J, Rodrigues ALS (2017) Antidepressant and pro-neurogenic effects of agmatine in a mouse model of stress induced by chronic exposure to corticosterone. Prog Neuro-Psychopharmacol Biol Psychiatry 81:395–407

    Article  CAS  Google Scholar 

  • Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF (2016) Major depressive disorder. Nat Rev Dis Primers 2:1065

    Article  Google Scholar 

  • Parker GB, Brotchie H, Graham RK (2017) Vitamin D and depression. J Affect Disord 208:56–61

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues AL, Rocha JB, Mello CF, Souza DO (1996) Effect of perinatal lead exposure on rat behaviour in open-field and two-way avoidance tasks. Pharmacol Toxicol 79:150–156

    Article  CAS  PubMed  Google Scholar 

  • Rosa PB, Ribeiro CM, Bettio LE, Colla A, Lieberknecht V, Moretti M, Rodrigues AL (2014) Folic acid prevents depressive-like behavior induced by chronic corticosterone treatment in mice. Pharmacol Biochem Behav 127:1–6

    Article  CAS  PubMed  Google Scholar 

  • Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neurophamarcology 62:63–77

    Article  CAS  Google Scholar 

  • Sato H, Takahashi T, Sumitani K, Takatsu H, Urano S (2010) Glucocorticoid generates ROS to induce oxidative injury in the hippocampus, leading to impairment of cognitive function of rats. J Clin Biochem Nutr 47(3):224–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sepehrmanesh Z, Kolahdooz F, Abedi F, Mazroii N, Assarian A, Asemi Z, Esmaillzadeh A (2016) Vitamin D supplementation affects the Beck depression inventory, insulin resistance, and biomarkers of oxidative stress in patients with major depressive disorder: a randomized, controlled clinical trial. J Nutr 46:243–248

    Article  PubMed  CAS  Google Scholar 

  • Shin YC, Jung CH, Kim HJ, Kim EJ, Lim SW (2016) The associations among vitamin D deficiency, C-reactive protein, and depressive symptoms. J Psychosom Res 90:98–104

    Article  CAS  PubMed  Google Scholar 

  • Silva MC, de Sousa CN, Gomes PX, de Oliveira GV, Araújo FY, Ximenes NC, da Silva JC et al (2016) Evidence for protective effect of lipoic acid and desvenlafaxine on oxidative stress in a model depression in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 64:142–148

    Article  CAS  Google Scholar 

  • Smaga I, Niedzielska E, Gawlik M, Moniczewski A, Krzek J, Przegaliński E, Pera J, Filip M (2015) Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol Rep 67:569–580

    Article  CAS  PubMed  Google Scholar 

  • Spiers JG, Chen HJ, Bradley AJ, Anderson ST, Sernia C, Lavidis NA (2013) Acute restraint stress induces rapid and prolonged changes in erythrocyte and hippocampal redox status. Psychoneuroendocrinology 38:2511–2519

    Article  CAS  PubMed  Google Scholar 

  • Spiers JG, Chen HJ, Sernia C, Lavidis NA (2015) Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front Neurosci 8:456

    Article  PubMed  PubMed Central  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test - a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  • Tarbali S, Khezri S (2016) Vitamin D3 attenuates oxidative stress and cognitive deficits in a model of toxic demyelination. Iran J Basic Med Sci 19:80–88

    PubMed  PubMed Central  Google Scholar 

  • Velimirović M, Dožudić GJ, Selaković V, Stojković T, Puškaš N, Zaletel I, Živković M, Dragutinović V, Nikolić T, Jelenković A, Djorović D, Mirčić A, Petronijević ND (2018) Effects of vitamin D3 on the NADPH oxidase and matrix metalloproteinase in an animal model of global cerebral ischemia. Oxidative Med Cell Longev 2018:3273654

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2018a) Depression. http://www.who.int/en/news-room/fact-sheets/detail/depression. Accessed 03 october 2018

  • World Health Organization (WHO) (2018b) Mental Health Gap Action Programme (mhGAP) Intervention Guide. http://apps.who.int/iris/bitstream/handle/10665/250239/9789241549790-eng.pdf;jsessionid=F7475276A6CADF44441D68B715E1B4DC?sequence=1. Accessed 03 october 2018

  • Wrzosek M, Łukaszkiewicz J, Wrzosek M, Jakubczyk A, Matsumoto H, Piątkiewicz P et al (2013) Vitamin D and the central nervous system. Pharmacol Rep 65:271–278

    Article  CAS  PubMed  Google Scholar 

  • Yalcin I, Belzung C, Surget A (2008) Mouse strain differences in the unpredictable chronic mild stress: a four-antidepressant survey. Behav Brain Res 193:140–143

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Wu L, Du S, Hu Y, Fan Y, Ma J (2016) 1,25(OH)2D3 inhibits high glucose-induced apoptosis and ROS production in human peritoneal mesothelial cells via the MAPK/P38 pathway. Mol Med Rep 14:839–844

    Article  CAS  PubMed  Google Scholar 

  • Yau WY, Chan MC, Wing YK, Lam HB, Lin W, Lam SP, Lee CP (2014) Noncontinuous use of antidepressant in adults with major depressive disorders – a retrospective cohort study. Brain Behav 4:390–397

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Su WJ, Chen Y, Wu TY, Gong H, Shen XL, Wang YX, Sun XJ, Jiang CL (2016) Effects of hydrogen-rich water on depressive-like behavior in mice. Sci Rep 6:2374

    Google Scholar 

  • Zhao Y, Ma R, Shen J, Su H, Xing D, Du L (2008) A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol 581:113–120

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Jung YH, Jin Y, Kang S, Jang CG, Lee J (2019) A comprehensive metabolomics investigation of hippocampus, serum, and feces affected by chronic fluoxetine treatment using the chronic unpredictable mild stress mouse model of depression. Sci Rep 9(1):7566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author contribution statement

MM and ALSR conceived and designed research. SVSS, PBR, VBN, and MM conducted experiments. SVSS, PBR, JDM, and MM analyzed data. SVSS, JDM, and MM wrote the manuscript. All authors read and approved the manuscript.

Funding

This study was financially supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [grant numbers 150082/2018-5 and 310113/2017-2], and Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES). ALSR is CNPq Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgana Moretti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Ethics Committee CEUA PP00795).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Souza, S.V., da Rosa, P.B., Neis, V.B. et al. Effects of cholecalciferol on behavior and production of reactive oxygen species in female mice subjected to corticosterone-induced model of depression. Naunyn-Schmiedeberg's Arch Pharmacol 393, 111–120 (2020). https://doi.org/10.1007/s00210-019-01714-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-019-01714-2

Keywords

Navigation