Skip to main content
Log in

Apoptotic effects of norfloxacin on corneal endothelial cells

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Norfloxacin, a frequently used ocular antibiotic, might have cytotoxic effect on human corneal endothelial cells (HCECs), subsequently damage the cornea and finally impair human vision. However, the possible mechanisms of cytotoxicity of norfloxacin to HCEC line are unclear. Herein, we investigated the cytotoxicity of norfloxacin and its underlying cellular and molecular mechanisms using in vitro cultured non-transfected HCECs and verified the cytotoxicity with cat corneal endothelium in vivo. In the present study, the cytotoxicity of norfloxacin in the in vitro cultured HCECs was recognized by causing abnormal morphology such as cell shrinkage and detachment from plate bottom, and decline of viability of in vitro cultured HCECs. Then, its cytotoxicity was verified by inducing reduction of cell density and morphological abnormality of in vivo cat corneal endothelial cells. Furthermore, the cytotoxicity of norfloxacin in HCECs was corroborated as apoptosis by elevation of plasma membrane permeability, S phase arrest, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation in in vitro cultured HCECs and apoptosis-like swollen cells in the in vivo model. Moreover, norfloxacin induced extrinsic death receptor-mediated apoptosis pathway by activating caspase-2/-8/-3 and intrinsic mitochondrion-dependent apoptosis pathway by downregulating anti-apoptotic Bcl-2 and upregulating of pro-apoptotic Bad, which disrupted mitochondrial transmembrane potential, subsequently upregulated cytoplasmic cytochrome c and apoptosis-inducing factor and finally activated caspase-9/-3. Generally, norfloxacin induces HCE cell apoptosis via a death receptor-mediated and mitochondrion-dependent signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

HCE:

Human corneal endothelium

HCEC:

Human corneal endothelial cell

CCEC:

Cat corneal endothelial cell

DMEM/F12:

Dulbecco’s modified Eagle medium/Ham’s nutrient mixture F-12 (1:1) medium

FBS:

Fetal bovine serum

MTT:

Methyl thiazolyl tetrazolium

FCM:

Flow cytometry

PI:

Propidium iodide

ECD:

Corneal endothelial cell density

CCT:

Central corneal thickness

PM:

Plasma membrane

PS:

Phosphatidylserine

AO/EB:

Acridine orange/ethidium bromide

PBS:

Phosphate-buffered saline

TEM:

Transmission electron microscope

ΔΨm:

Mitochondrial transmembrane potential

PMSF:

Phenylmethylsulfonyl fluoride

PBST:

PBS containing 0.05% Tween-20

HRP:

Horseradish peroxidase

RIPA:

Radio immunoprecipitation assay

ELISA:

Enzyme-linked immunosorbent assay

Cyt. c:

Cytochrome c

AIF:

Apoptosis-inducing factor

JC-1:

5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolocarbocyanine iodide

References

  • Ayaki M, Yaguchi S, Iwasawa A, Koide R (2008) Cytotoxicity of ophthalmic solutions with and without preservatives to human corneal endothelial cells, epithelial cells and conjunctival epithelial cells. Clin Exp Ophthalmol 36(6):553–559

    PubMed  Google Scholar 

  • Ayaki M, Taguchi Y, Soda M, Yaguchi S, Iwasawa A, Koide R (2010) Cytotoxicity of antibiotic medications used for infection and inflammation control after cataract surgery in cultured corneal endothelial cells. Biocontrol Sci 15(3):97–102

    CAS  PubMed  Google Scholar 

  • Ayaki M, Iwasawa A, Niwano Y (2012) In vitro assessment of the cytotoxicity of six antibiotic antibiotics to four cultured ocular surface cell lines. Biocontrol Sci 17(2):93–99

    CAS  PubMed  Google Scholar 

  • Beck R, van Keyserlingk J, Fischer U, Guthoff R, Drewelow B (1999) Penetration of ciprofloxacin, norfloxacin and ofloxacin into the aqueous humor using different topical application modes. Graefes Arch Clin Exp Ophthalmol 237(2):89–92

    CAS  PubMed  Google Scholar 

  • Bezwada P, Clark LA, Schneider S (2008) Intrinsic cytotoxic effects of fluoroquinolones on human corneal keratocytes and endothelial cells. Curr Med Res Opin 24(2):419–424

    CAS  PubMed  Google Scholar 

  • Cai J, Yang J, Jones DP (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1366(1–2):139–149

    CAS  Google Scholar 

  • Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63

    CAS  PubMed  Google Scholar 

  • Dallaporta B, Marchetti P, de Pablo MA, Maisse C, Duc HT, Me’tivier D, Zamzami N, Geuskens M, Kroemer G (1999) Plasma membrane potential in thymocyte apoptosis. J Immunol 162:6534–6542

    CAS  PubMed  Google Scholar 

  • Fadok VA, de Cathelineau A, Daleke DL, Henson PM, Bratton DL (2001) Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J Biol Chem 276:1071–1077

    CAS  PubMed  Google Scholar 

  • Fan D, Fan TJ (2017) Clonidine induces apoptosis of human corneal epithelial cells through death receptors-mediated, mitochondria-dependent signaling pathway. Toxicol Sci 156(1):252–260

    CAS  PubMed  Google Scholar 

  • Fan T, Han L, Cong R, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin Shanghai 37:719–727

    CAS  PubMed  Google Scholar 

  • Fan T, Zhao J, Ma X, Xu X, Zhao W, Xu B (2011) Establishment of a continuous untransfected human corneal endothelial cell line and its biocompatibility to denuded amniotic membrane. Mol Vis 17:469–480

    PubMed  PubMed Central  Google Scholar 

  • Fan T, Ma X, Zhao J, Wen Q, Hu X, Yu H, Shi W (2013) Transplantation of tissue-engineered human corneal endothelium in cat models. Mol Vis 19:400–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan WY, Wang DP, Wen Q, Fan TJ (2017) The cytotoxic effect of oxybuprocaine on human corneal epithelial cells by inducing cell cycle arrest and mitochondria-dependent apoptosis. Hum Exp Toxicol 36(8):765–775

    CAS  PubMed  Google Scholar 

  • Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423–1433

    CAS  PubMed  Google Scholar 

  • Gogolin S, Ehemann V, Becker G, Brueckner LM, Dreidax D, Bannert S, Nolte I, Savelyeva L, Bell E, Westermann F (2013) CDK4 inhibition restores G(1)-S arrest in MYCN-amplified neuroblastoma cells in the context of doxorubicin-induced DNA damage. Cell Cycle 12:1091–1104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassell JR, Birk DE (2010) The molecular basis of corneal transparency. Exp Eye Res 91(3):326–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    CAS  PubMed  Google Scholar 

  • Joyce NC (2003) Proliferative capacity of the corneal endothelium. Prog Retin Eye Res 22:359–389

    CAS  PubMed  Google Scholar 

  • Karmakar I, Haldar S, Chakraborty M, Chaudhury K, Dewanjee S, Haldar PK (2016) Regulation of apoptosis through bcl-2/bax proteins expression and DNA damage by Zanthoxylum alatum. Pharm Biol 54(3):503–508

    CAS  PubMed  Google Scholar 

  • Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    CAS  PubMed  Google Scholar 

  • Knight T, Luedtke D, Edwards H, Taub JW, Ge Y (2019) A delicate balance—the BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem Pharmacol 162:250–261

    CAS  PubMed  Google Scholar 

  • Lee SA, Kim YJ, Lee CS (2013) Brefeldin A induces apoptosis by activating the mitochondrial and death receptor pathways and inhibits focal adhesion kinase-mediated cell invasion. Basic Clin Pharmacol 113:329–338

    CAS  Google Scholar 

  • Li Y, Wen Q, Fan T, Ge Y, Yu M, Sun L, Zhao Y (2015) Dose dependent cytotoxicity of pranoprofen in cultured human corneal endothelial cells by inducing apoptosis. Drug Chem Toxicol 38:16–21

    PubMed  Google Scholar 

  • Lobner D (2000) Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis? J Neurosci Methods 96:147–152

    CAS  PubMed  Google Scholar 

  • Matthews GM, Newbold A, Johnstone RW (2012) Intrinsic and extrinsic apoptotic pathway signaling as determinants of histone deacetylase inhibitor antitumor activity. Adv Cancer Res 116:165–197

    CAS  PubMed  Google Scholar 

  • McArthur K, Kile BT (2018) Apoptotic caspases: multiple or mistaken identities? Trends Cell Biol 28(6):475–493

    CAS  PubMed  Google Scholar 

  • Miao Y, Sun Q, Wen Q, Qiu Y, Ge Y, Yu MM, Fan TJ (2014) Cytotoxic effects of betaxolol on healthy corneal endothelial cells both in vitro and in vivo. Int J Ophthalmol 7:14–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Napoletano F, Baron O, Vandenabeele P, Mollereau B, Fanto M (2019) Intersections between regulated cell death and autophagy. Trends Cell Biol 29(4):323–338

    CAS  PubMed  Google Scholar 

  • Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci U S A 95:14681–14686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Natarajan SK, Becker DF (2012) Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress. Cell Health Cytoskelet 2012:11–27

    PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Enriquez S, He L, Lemasters JJ (2004) Role of mitochondrial permeability transition pores in mitochondrial autophagy. Int J Biochem Cell Biol 36(12):2463–2472

    CAS  PubMed  Google Scholar 

  • Santucci R, Sinibaldi F, Cozza P, Polticelli F, Fiorucci L (2019) Cytochrome c: an extreme multifunctional protein with a key role in cell fate. Int J Biol Macromol 136:1237–1246

    CAS  PubMed  Google Scholar 

  • Sedlackova L, Korolchuk VI (2019) Mitochondrial quality control as a key determinant of cell survival. Biochim Biophys Acta, Mol Cell Res 1866(4):575–587

    CAS  Google Scholar 

  • Shan M, Fan TJ (2016) Cytotoxicity of carteolol to human corneal epithelial cells by inducing apoptosis via triggering the Bcl-2 family protein-mediated mitochondrial pro-apoptotic pathway. Toxicol in Vitro 35:36–42

    CAS  PubMed  Google Scholar 

  • Tian CL, Wen Q, Fan TJ (2015) Cytotoxicity of atropine to human corneal epithelial cells by inducing cell cycle arrest and mitochondrion-dependent apoptosis. Exp Toxicol Pathol 67(10):517–524

    CAS  PubMed  Google Scholar 

  • Van Opdenbosch N, Lamkanfi M (2019) Caspases in cell death, inflammation, and disease. Immunity 50(6):1352–1364

    PubMed  Google Scholar 

  • von Keyserlingk J, Beck R, Fischer U, Hehl E, Guthoff R (1997) Penetration of ciprofloxacin, norfloxacin and ofloxacin into the aqueous humour of patients by different antibiotic application modes. Eur J Clin Pharmacol 3-4:251–255

    Google Scholar 

  • Wen Q, Fan TJ, Bai SR, Sui YL (2015) Cytotoxicity of proparacaine to human corneal endothelial cells in vitro. J Toxicol Sci 40:427–436

    CAS  PubMed  Google Scholar 

  • Wen Q, Fan TJ, Tian CL (2016) Cytotoxicity of atropine to human corneal endothelial cells by inducing mitochondrion-dependent apoptosis. Exp Biol Med (Maywood) 241:1457–1465

    CAS  Google Scholar 

  • White MK, Cinti CA (2004) Morphologic approach to detect apoptosis based on electron microscopy. Methods Mol Biol 285:105–111

    PubMed  Google Scholar 

  • Yu HZ, Li YH, Wang RX, Zhou X, Yu MM, Ge Y, Zhao J, Fan TJ (2014) Cytotoxicity of lidocaine to human corneal endothelial cells in vitro. Basic Clin Pharmacol 114:352–359

    CAS  Google Scholar 

Download references

Funding

This study was supported by the National Key Research and Development Program of China (2018YFC1106000/2018YFC1106001) from the Ministry of Science and Technology of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Contributions

TF planned the experiment, provided financial support, and performed data analysis. SW executed the experiment and performed data analysis. GJ planned the experiment, performed data analysis, and wrote the manuscript.

Corresponding author

Correspondence to Guo-Jian Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 356 kb)

ESM 2

(DOCX 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, TJ., Wu, SX. & Jiang, GJ. Apoptotic effects of norfloxacin on corneal endothelial cells. Naunyn-Schmiedeberg's Arch Pharmacol 393, 77–88 (2020). https://doi.org/10.1007/s00210-019-01711-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-019-01711-5

Keywords

Navigation