Neryl butyrate induces contractile effects on isolated preparations of rat aorta

  • Emanuella Feitosa de Carvalho
  • Kalinne Kelly Lima Gadelha
  • Daniel Maia Nogueira de Oliveira
  • Karine Lima-Silva
  • Francisco José Batista-Lima
  • Teresinha Silva de Brito
  • Suliana Mesquita Paula
  • Moisés Tolentino Bento da Silva
  • Armênio Aguiar dos Santos
  • Pedro Jorge Caldas MagalhãesEmail author
Original Article


Neryl butyrate is a constituent of volatile oils obtained from aromatic plants. Aliphatic organic compound analogues chemically close to neryl butyrate possess vasodilator properties in rat aorta. To evaluate whether neryl butyrate has relaxing properties, this study tested its effects on isolated rat aorta. Unlike the analogues, neryl butyrate did not show relaxant profile in aortic rings precontracted with phenylephrine, but induced a contraction when it stimulated aortic rings under resting tonus. The contractile effect augmented in endothelium-denuded aortic rings. Treatment of endothelium-intact preparations with the nitric oxide synthase inhibitor L-NAME or the guanylyl cyclase inhibitor ODQ also augmented the contractile effect of neryl butyrate. Such phenomenon was absent in the presence of the cyclooxygenase inhibitor indomethacin. Contractile responses decreased in the presence of verapamil, a L-type Ca2+ channel blocker, or when Ca2+ was removed from the extracellular solution. Antagonists of α-adrenergic receptors (prazosin and yohimbine), but not the thromboxane-prostanoid receptor seratrodast, reversed the contraction induced by neryl butyrate. The α1A selective antagonist RS-17053 antagonized the neryl butyrate-induced contraction. The contraction caused by neryl butyrate was decreased by inhibiting the phospholipase C or the rho-associated kinase with U-73122 or Y-27632, respectively. Injected intravenously to awake rats, neryl butyrate induced arterial hypotension and bradycardia. Decreased frequency was also present in isolated right atrium preparations. In conclusion, the contractile effects of neryl butyrate were inhibited by α-adrenergic antagonists, indicating the involvement of α-adrenoceptors in the mechanism of action. In vivo, neryl butyrate caused hypotension, suggesting that other systemic influence than vasoconstriction may occur.


Thoracic aorta Monoterpenes Vascular endothelium Adrenergic receptors 



Transient receptor potential vanilloid


Transient receptor potential melastatin


NG-nitro-l-arginine methyl ester






(R)-(+)-trans-4-(1-Aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride


9,11-Dideoxy-11α,9α-epoxymethanoprostaglandin F2α




Analysis of variance


Standard error of mean


Author contributions

E.F.C and P.J.C.M. conceived and designed research. E.F.C., K.K.L.G, D.M.N.O., K.L.S. and F.J.B.L. performed in vitro experiments. E.F.C. and M.T.B.S. performed in vivo experiments; E.F.C., K.K.L.G, D.M.N.O., K.L.S., F.J.B.L., T.S.B., S.M.P., M.T.B.S., A.A.S. and P.J.C.M. interpreted results of experiments, drafted, edited and revised the manuscript; All authors approved the final version of the manuscript.

Funding information

This research was supported by resources from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Finance code 001), Instituto Nacional de Biomedicina do Semiárido Brasileiro (IBISAB-CNPq and grant number 311266/2015-0).

Compliance with ethical standards

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution (Federal University of Ceará).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alsufyani HA, Docherty JR (2018) Direct and indirect effects of ephedrine on heart rate and blood pressure in vehicle-treated and sympathectomised male rats. Eur J Pharmacol 825:34–38CrossRefGoogle Scholar
  2. Angerio AD, Fitzpatrick TM, Kot PA, Ramwell PW, Rose JC, Santoian EC (1982) Effect of TMB-8 on the pulmonary vasoconstrictor action of prostaglandin F2 alpha and the thromboxane mimic, U 46619. Br J Pharmacol 77:55–58CrossRefGoogle Scholar
  3. Arce C, Vicente D, Segura V, Flacco N, Montó F, Almenar L, Agüero J, Rueda J, Jiménez-Altayó F, Vila E, Noguera MA, D’Ocon P, Ivorra MD (2017) Activation of α(1A)-adrenoceptors desensitizes the rat aorta response to phenylephrine through a neuronal NOS pathway, a mechanism lost with ageing. Br J Pharmacol 174:2015–2030CrossRefGoogle Scholar
  4. Auch-Schwelk W, Katusić ZS, Vanhoutte PM (1992) Nitric oxide inactivates endothelium-derived contracting factor in the rat aorta. Hypertension 19:442–445CrossRefGoogle Scholar
  5. Behrendt HJ, Germann T, Gillen C, Hatt H, Jostock R (2004) Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br J Pharmacol 141:737–745CrossRefGoogle Scholar
  6. Bylund DB, Blaxall HS, Iversen LJ, Caron MG, Lefkowitz RJ, Lomasney JW (1992) Pharmacological characteristics of alpha 2-adrenergic receptors: comparison of pharmacologically defined subtypes with subtypes identified by molecular cloning. Mol Pharmacol 42:1–5Google Scholar
  7. Ciccarelli M, Santulli G, Campanile A, Galasso G, Cervèro P, Altobelli GG, Cimini V, Pastore L, Piscione F, Trimarco B, Iaccarino G (2008) Endothelial alpha1-adrenoceptors regulate neo-angiogenesis. Br J Pharmacol 153:936–946CrossRefGoogle Scholar
  8. da Silva RER, de Morais LP, Silva AA, Bastos CMS, Pereira-Gonçalves A, Kerntopf MR, Menezes IRA, Leal-Cardoso JH, Barbosa R (2018) Vasorelaxant effect of the Lippia alba essential oil and its major constituent, citral, on the contractility of isolated rat aorta. Biomed Pharmacother 108:792–798CrossRefGoogle Scholar
  9. Devi RC, Sim SM, Ismail R (2012) Effect of Cymbopogon citratus and Citral on vascular smooth muscle of the isolated thoracic rat aorta. Evid Based Complement Alternat Med 2012:539475CrossRefGoogle Scholar
  10. El-Bassossy HM, Elberry AA, Ghareib SA (2016) Geraniol improves the impaired vascular reactivity in diabetes and metabolic syndrome through calcium channel blocking effect. J Diabetes Complicat 30:1008–1016CrossRefGoogle Scholar
  11. Ford APDW, Daniels DV, Chang DJ, Gever JR, Jasper JR, Lesnick JD, Clarke DE (1997) Pharmacological pleiotropism of the human recombinant α1A-adrenoceptor: implications for α1-adrenoceptor classification. Br J Pharmacol 121:1127–1135CrossRefGoogle Scholar
  12. Godfraind T, Egleme C, Al Osachie I (1985) Role of endothelium in the contractile response of rat aorta to α-adrenoceptor agonists. Clin Sci (Lond) 68(s10):65s–71sCrossRefGoogle Scholar
  13. Kennedy AI, Deans SG, Svoboda KP, Gray AI, Waterman PG (1993) Volatile oils from normal and transformed root of Artemisia absinthium. Phytochemistry 32:1449–1451CrossRefGoogle Scholar
  14. Löhn M, Plettenburg O, Ivashchenko Y, Kannt A, Hofmeister A, Kadereit D, Schaefer M, Linz W, Kohlmann M, Herbert JM, Janiak P, O’Connor SE, Ruetten H (2009) Pharmacological characterization of SAR407899, a novel rho-kinase inhibitor. Hypertension 54:676–683CrossRefGoogle Scholar
  15. Malmström RE, Törnberg DC, Settergren G, Liska J, Angdin M, Lundberg JO, Weitzberg E (2003) Endogenous nitric oxide release by vasoactive drugs monitored in exhaled air. Am J Respir Crit Care Med 168:114–120CrossRefGoogle Scholar
  16. Mayet J, Hughes A (2003) Cardiac and vascular pathophysiology in hypertension. Heart 89:1104–1109CrossRefGoogle Scholar
  17. Mitsuhata H, Takeuchi H, Saitoh J, Hasome N, Horiguchi Y, Shimizu R (1995) An inhibitor of nitric oxide synthase, N omega-nitro-L-arginine-methyl ester, attenuates hypotension but does not improve cardiac depression in anaphylaxis in dogs. Shock 3:447–453Google Scholar
  18. Nunes DO, Almenara CC, Broseghini-Filho GB, Silva MA, Stefanon I, Vassallo DV, Padilha AS (2014) Flaxseed oil increases aortic reactivity to phenylephrine through reactive oxygen species and the cyclooxygenase-2 pathway in rats. Lipids Health Dis 13:107CrossRefGoogle Scholar
  19. Pereira SL, Marques AM, Sudo RT, Kaplan MA, Zapata-Sudo G (2013) Vasodilator activity of the essential oil from aerial parts of Pectis brevipedunculata and its main constituent citral in rat aorta. Molecules 18:3072–3085CrossRefGoogle Scholar
  20. Ribeiro-Filho HV, de Souza Silva CM, de Siqueira RJ, Lahlou S, dos Santos AA, Magalhães PJ (2016) Biphasic cardiovascular and respiratory effects induced by β-citronellol. Eur J Pharmacol 775:96–105CrossRefGoogle Scholar
  21. Rizk AM, Heiba HI, Sandra P, Mashaly M, Bicchi C (1983) Constituents of the volatile oil of Cymbopogon parkeri. J Chromatogr 279:145–150CrossRefGoogle Scholar
  22. Schrammel A, Behrends S, Schmidt K, Koesling D, Mayer B (1996) Characterization of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol Pharmacol 50:1–5Google Scholar
  23. Smith RJ, Sam LM, Justen JM, Bundy GL, Bala GA, Bleasdale JE (1990) Receptor-coupled signal transduction in human polymorphonuclear neutrophils: effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness. J Pharmacol Exp Ther 253:688–697Google Scholar
  24. Stotz SC, Vriens J, Martyn D, Clardy J, Clapham DE (2008) Citral sensing by transient [corrected] receptor potential channels in dorsal root ganglion neurons. PLoS One 3:e2082CrossRefGoogle Scholar
  25. Tolasch T, von Fragstein M, Steidle JL (2010) Sex pheromone of Agriotes acuminatus (Stephens, 1830) (Coleoptera: Elateridae). J Chem Ecol 36:314–318CrossRefGoogle Scholar
  26. Vasconcelos TB, Ribeiro-Filho HV, Lucetti LT, Magalhães PJ (2016) β-Citronellol, an alcoholic monoterpene with inhibitory properties on the contractility of rat trachea. Braz J Med Biol Res 49:e4800Google Scholar
  27. Wang A, Nishihashi T, Murakami S, Trandafir CC, Ji X, Shimizu Y, Kurahashi K (2003) Noradrenaline-induced contraction mediated by endothelial COX-1 metabolites in the rat coronary artery. J Cardiovasc Pharmacol 42(Suppl 1):S39–S42CrossRefGoogle Scholar
  28. Webb RC (2003) Smooth muscle contraction and relaxation. Adv Physiol Educ 27:201–206CrossRefGoogle Scholar
  29. Wouters J, Durant F, Masereel B (1999) Antagonism of the TXA2 receptor by seratrodast: a structural approach. Bioorg Med Chem Lett 9:2867–2870CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Emanuella Feitosa de Carvalho
    • 1
  • Kalinne Kelly Lima Gadelha
    • 1
  • Daniel Maia Nogueira de Oliveira
    • 1
  • Karine Lima-Silva
    • 1
  • Francisco José Batista-Lima
    • 1
  • Teresinha Silva de Brito
    • 2
  • Suliana Mesquita Paula
    • 1
  • Moisés Tolentino Bento da Silva
    • 3
  • Armênio Aguiar dos Santos
    • 1
  • Pedro Jorge Caldas Magalhães
    • 1
    • 4
    Email author
  1. 1.Department of Physiology and PharmacologyFederal University of CearáFortalezaBrazil
  2. 2.Department of Health SciencesRural Federal University of the SemiaridMossoróBrazil
  3. 3.Department of Physical EducationFederal University of PiauíTeresinaBrazil
  4. 4.Department of Physiology and Pharmacology, School of MedicineFederal University of CearáFortalezaBrazil

Personalised recommendations