Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 392, Issue 9, pp 1043–1048 | Cite as

The deafness gene GSDME: its involvement in cell apoptosis, secondary necrosis, and cancers

  • Yue-Qi Li
  • Jing-Jie Peng
  • Jun Peng
  • Xiu-Ju LuoEmail author


Gasdermin E (GSDME), also called DFNA5, is a member of the gasdermin family. GSDME is involved in the regulation of apoptosis and necrosis. The N-terminal domain of GSDME displays an apoptosis-inducing activity while the C-terminal domain may serve as an apoptosis-inhibiting regulator by shielding the N-terminal domain. Besides its function in the regulation of apoptosis, GSDME was recently reported to be a substrate of caspase-3 and cleavage of GSDME by caspase-3 into necrotic N-terminal fragment leads to the induction of secondary necrosis. GSDME was first identified as a deafness gene because its mutation was associated with a specific form of autosomal dominant progressive sensorineural hearing loss. Furthermore, GSDME has been considered a tumor suppressor implicated in several types of cancer. This mini-review summarized recent reports relevant to the functions of GSDME in the regulation of apoptosis and necrosis as well as its clinical relevance.


GSDME DFNA5 Secondary necrosis Apoptosis Hearing loss Cancer 


Author contributions

YQ Li and JJ Peng drafted the manuscript, and J Peng and XJ Luo revised the manuscript. All authors agreed the final version of the manuscript and approved the submission.

Funding information

This work was supported by the National Natural Science Foundation of China, China (No. 81573430 to Xiu-Ju Luo; No. 81872873 to Jun Peng) and Natural Science Foundation of Hunan Province, China (No. 2015JJ2156 to Xiu-Ju Luo).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Akino K, Toyota M, Suzuki H, Imai T, Maruyama R, Kusano M, Nishikawa N, Watanabe Y, Sasaki Y, Abe T, Yamamoto E, Tarasawa I, Sonoda T, Mori M, Imai K, Shinomura Y, Tokino T (2007) Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer. Cancer Sci 98(1):88–95CrossRefGoogle Scholar
  2. Bianchi SM, Prince LR, McPhillips K, Allen L, Marriott HM, Taylor GW, Hellewell PG, Sabroe I, Dockrell DH, Henson PW, Whyte MK (2008) Impairment of apoptotic cell engulfment by pyocyanin, a toxic metabolite of Pseudomonas aeruginosa. Am J Respir Crit Care Med 177(1):35–43CrossRefGoogle Scholar
  3. Bischoff AMLC, Luijendijk MWJ, Huygen PLM, van Duijnhoven G, De Leenheer EMR, Oudesluijs GG, Van Laer L, Cremers FPM, Cremers CWRJ, Kremer H (2004) A novel mutation identified in the DFNA5 gene in a Dutch family: a clinical and genetic evaluation. Audiol Neuro-Otol 9(1):34–46CrossRefGoogle Scholar
  4. Booth KT, Azaiez H, Kahrizi K, Wang D, Zhang Y, Frees K, Nishimura C, Najmabadi H, Smith RJ (2018) Exonic mutations and exon skipping: lessons learned from DFNA5. Hum Mutat 39(3):433–440CrossRefGoogle Scholar
  5. Chai YC, Chen DY, Wang XW, Wu H, Yang T (2014) A novel splice site mutation in DFNA5 causes late-onset progressive non-syndromic hearing loss in a Chinese family. Int J Pediatr Otorhi 78(8):1265–1268CrossRefGoogle Scholar
  6. Cheng J, Han DY, Dai P, Sun HJ, Tao R, Sun Q, Yan D, Qin W, Wang HY, Ouyang XM, Yang SZ, Cao JY, Feng GY, Du LL, Zhang YZ, Zhai SQ, Yang WY, Liu XZ, He L, Yuan HJ (2007) A novel DFNA5 mutation, IVS8+4 A>G, in the splice donor site of intron 8 causes late-onset non-syndromic hearing loss in a Chinese family. Clin Genet 72(5):471–477CrossRefGoogle Scholar
  7. Croes L, Op de Beeck K, Van Camp G (2015) Role of DFNA5 in hearing loss and cancer - a comment on Rakusic et al. OncoTargets Ther 8:2613–2615CrossRefGoogle Scholar
  8. Croes L, Beyens M, Fransen E, Ibrahim J, Berghe WV, Suls A, Peeters M, Pauwels P, Van Camp G, de Beeck KO (2018) Large-scale analysis of DFNA5 methylation reveals its potential as biomarker for breast cancer. Clin Epigenetics 10:51CrossRefGoogle Scholar
  9. de Beeck KO, Van Laer L, Van Camp G (2012) DFNA5, a gene involved in hearing loss and cancer: a review. Ann Otol, Rhinol Laryngol 121(3):197–207CrossRefGoogle Scholar
  10. Feng S, Fox D, Man SM (2018) Mechanisms of gasdermin family members in inflammasome signaling and cell death. J Mol Biol 430(18 Pt B):3068–3080CrossRefGoogle Scholar
  11. Finn AV, Kolodgie FD, Virmani R (2010) Correlation between carotid intimal/medial thickness and atherosclerosis a point of view from pathology. Arterioscl Throm Vas 30(2):177–181CrossRefGoogle Scholar
  12. Fischer U, Janicke RU, Schulze-Osthoff K (2003) Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10(1):76–100CrossRefGoogle Scholar
  13. Fujikane T, Nishikawa N, Toyota M, Suzuki H, Nojima M, Maruyama R, Ashida M, Ohe-Toyota M, Kai M, Nishidate T, Sasaki Y, Ohmura T, Hirata K, Tokino T (2010) Genomic screening for genes upregulated by demethylation revealed novel targets of epigenetic silencing in breast cancer. Breast Cancer Res Treat 122(3):699–710CrossRefGoogle Scholar
  14. Gaipl US, Munoz LE, Grossmayer G, Lauber K, Franz S, Sarter K, Voll RE, Winkler T, Kuhn A, Kalden J, Kern P, Herrmann M (2007) Clearance deficiency and systemic lupus erythematosus (SLE). J Autoimmun 28(2–3):114–121CrossRefGoogle Scholar
  15. Gregan J, Van Laer L, Lieto LD, Van Camp G, Kearsey SE (2003) A yeast model for the study of human DFNA5, a gene mutated in nonsyndromic hearing impairment. Biochim Biophys Acta 1638(2):179–186CrossRefGoogle Scholar
  16. Kim MS, Chang X, Yamashita K, Nagpal JK, Baek JH, Wu G, Trink B, Ratovitski EA, Mori M, Sidransky D (2008a) Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma. Oncogene 27(25):3624–3634CrossRefGoogle Scholar
  17. Kim MS, Lebron C, Nagpal JK, Chae YK, Chang X, Huang Y, Chuang T, Yamashita K, Trink B, Ratovitski EA, Califano JA, Sidransky D (2008b) Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer. Biochem Biophys Res Commun 370(1):38–43CrossRefGoogle Scholar
  18. Lage H, Helmbach H, Grottke C, Dietel M, Schadendorf D (2001) DFNA5 (ICERE-1) contributes to acquired etoposide resistance in melanoma cells. FEBS Lett 494(1–2):54–59CrossRefGoogle Scholar
  19. Lee BL, Mirrashidi KM, Stowe IB, Kummerfeld SK, Watanabe C, Haley B, Cuellar TL, Reichelt M, Kayagaki N (2018) ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages. Sci Rep 8(1):3788CrossRefGoogle Scholar
  20. Li-Yang MN, Shen XF, Wei QJ, Yao J, Lu YJ, Cao X, Xing GQ (2015) IVS8+1 DelG, a novel splice site mutation causing DFNA5 deafness in a Chinese family. Chin Med J 128(18):2510–2515CrossRefGoogle Scholar
  21. Lu H, Zhang S, Wu J, Chen M, Cai MC, Fu Y, Li W, Wang J, Zhao X, Yu Z, Ma P, Zhuang G (2018) Molecular targeted therapies elicit concurrent apoptotic and GSDME-dependent pyroptotic tumor cell death. Clin Cancer Res 24(23):6066–6077CrossRefGoogle Scholar
  22. Masuda Y, Futamura M, Kamino H, Nakamura Y, Kitamura N, Ohnishi S, Miyamoto Y, Ichikawa H, Ohta T, Ohki M, Kiyono T, Egami H, Baba H, Arakawa H (2006) The potential role of DFNA5, a hearing impairment gene, in p53-mediated cellular response to DNA damage. J Hum Genet 51(8):652–664CrossRefGoogle Scholar
  23. Mukaro VR, Hodge S (2011) Airway clearance of apoptotic cells in COPD. Curr Drug Targets 12(4):460–468CrossRefGoogle Scholar
  24. Op de Beeck K, Van Camp G, Thys S, Cools N, Callebaut I, Vrijens K, Van Nassauw L, Van Tendeloo VF, Timmermans JP, Van Laer L (2011) The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein. Eur J Hum Genet 19(9):965–973CrossRefGoogle Scholar
  25. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517(7534):311–320CrossRefGoogle Scholar
  26. Qiu S, Liu J, Xing F (2017) ‘Hints’ in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death. Cell Death Differ 24(4):588–596CrossRefGoogle Scholar
  27. Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES (2017) Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun 8:14128CrossRefGoogle Scholar
  28. Sha SH, Taylor R, Forge A, Schacht J (2001) Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hearing Res 155(1–2):1–8CrossRefGoogle Scholar
  29. Silva MT (2010) Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett 584(22):4491–4499CrossRefGoogle Scholar
  30. Stoll G, Ma Y, Yang H, Kepp O, Zitvogel L, Kroemer G (2017) Pro-necrotic molecules impact local immunosurveillance in human breast cancer. Oncoimmunology 6(4):e1299302CrossRefGoogle Scholar
  31. Thompson DA, Weigel RJ (1998) Characterization of a gene that is inversely correlated with estrogen receptor expression (ICERE-1) in breast carcinomas. Eur J Biochem 252(1):169–177CrossRefGoogle Scholar
  32. Uller L, Persson CGA, Erjefalt JS (2006) Resolution of airway disease: removal of inflammatory cells through apoptosis, egression or both? Trends Pharmacol Sci 27(9):461–466CrossRefGoogle Scholar
  33. Van Laer L, Huizing EH, Verstreken M, van Zuijlen D, Wauters JG, Bossuyt PJ, Van de Heyning P, McGuirt WT, Smith RJ, Willems PJ, Legan PK, Richardson GP, Van Camp G (1998) Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nat Genet 20(2):194–197CrossRefGoogle Scholar
  34. Van Laer L, Vrijens K, Thys S, Van Tendeloo VF, Smith RJ, Van Bockstaele DR, Timmermans JP, Van Camp G (2004) DFNA5: hearing impairment exon instead of hearing impairment gene. J Med Genet 41(6):401–406CrossRefGoogle Scholar
  35. Van Rossom S, Op de Beeck K, Franssens V, Swinnen E, Schepers A, Ghillebert R, Caldara M, Van Camp G, Winderickx J (2012) The splicing mutant of the human tumor suppressor protein DFNA5 induces programmed cell death when expressed in the yeast Saccharomyces cerevisiae. Front Oncol 2:77Google Scholar
  36. Van Rossom S, Op de Beeck K, Hristovska V, Winderickx J, Van Camp G (2015) The deafness gene DFNA5 induces programmed cell death through mitochondria and MAPK-related pathways. Front Cell Neurosci 9:231Google Scholar
  37. Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin CJ, Brunk UT, Declercq W, Vandenabeele P (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17(6):922–930CrossRefGoogle Scholar
  38. Wallach D, Kang TB, Dillon CP, Green DR (2016) Programmed necrosis in inflammation: toward identification of the effector molecules. Science 352(6281):aaf2154CrossRefGoogle Scholar
  39. Wang CJ, Tang L, Shen DW, Wang C, Yuan QY, Gao W, Wang YK, Xu RH, Zhang H (2013) The expression and regulation of DFNA5 in human hepatocellular carcinoma DFNA5 in hepatocellular carcinoma. Mol Biol Rep 40(12):6525–6531CrossRefGoogle Scholar
  40. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K, Shao F (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547(7661):99–103CrossRefGoogle Scholar
  41. Wang Y, Yin B, Li D, Wang G, Han X, Sun X (2018) GSDME mediates caspase-3-dependent pyroptosis in gastric cancer. Biochem Biophys Res Commun 495(1):1418–1425CrossRefGoogle Scholar
  42. Watt AP, Brown V, Courtney J, Kelly M, Garske L, Elborn JS, Ennis M (2004) Neutrophil apoptosis, proinflammatory mediators and cell counts in bronchiectasis. Thorax 59(3):231–236CrossRefGoogle Scholar
  43. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306CrossRefGoogle Scholar
  44. Yu X, He S (2017) GSDME as an executioner of chemotherapy-induced cell death. Sci China Life Sci 60(11):1291–1294CrossRefGoogle Scholar
  45. Yu C, Meng X, Zhang S, Zhao G, Hu L, Kong X (2003) A 3-nucleotide deletion in the polypyrimidine tract of intron 7 of the DFNA5 gene causes nonsyndromic hearing impairment in a Chinese family. Genomics 82(5):575–579CrossRefGoogle Scholar
  46. Zitvogel L, Kepp O, Kroemer G (2010) Decoding cell death signals in inflammation and immunity. Cell 140(6):798–804CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yue-Qi Li
    • 1
  • Jing-Jie Peng
    • 2
  • Jun Peng
    • 3
    • 4
  • Xiu-Ju Luo
    • 1
    Email author
  1. 1.Department of Laboratory MedicineXiangya School of Medicine, Central South UniversityChangshaChina
  2. 2.Department of Ophthalmology, Xiangya HospitalCentral South UniversityChangshaChina
  3. 3.Department of Pharmacology, Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaChina
  4. 4.Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaChina

Personalised recommendations