Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 392, Issue 9, pp 1131–1140 | Cite as

Glycerol monolaurate nanocapsules for biomedical applications: in vitro toxicological studies

  • Leonardo Quintana Soares LopesEmail author
  • Pablo Sebastian Britto de Oliveira
  • Walter Paixão de Souza Filho
  • Rodrigo de Almeida Vaucher
  • Janice Luehring Giongo
  • Michele Rorato Sagrillo
  • Roberto Christ Vianna Santos
Original Article
  • 59 Downloads

Abstract

The glycerol monolaurate (GML) is a surfactant used in the food industry and has potent antimicrobial activity against many microorganisms; however, the use of GML is not expanded due its high melting point and poor solubility in water. The aim of the study was to produce, characterize, and evaluate in vitro the cytotoxicity of GML and GML nanocapsules. The GML nanocapsules were produced and characterized by a mean diameter, zeta potential, and polydispersity index. The cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) release, thiobarbituric acid reactive substances (TBARS), and hemolytic activity. The genotoxicity was verified by comet assay. The physicochemical parameters showed a mean diameter of 192.5 ± 2.8 nm, a polydispersity index of 0.061 ± 0.018, and a zeta potential about − 21.9 ± 1 mV. The viability test demonstrated the protector effect of GML nanocapsule compared with the GML on peripheral blood mononuclear cells (PBMC) and VERO cells (isolated from kidney epithelial cells extracted from an African green monkey). A reduction in lipid peroxidation and lactate dehydrogenase release in GML nanocapsule–exposed cells compared with GML treated cells was observed. The damage on erythrocytes was addressed in treatment with GML, while the treatment with GML nanocapsules did not cause an effect. Moreover, the comet assay showed that the GML-caused genotoxicity and GML nanocapsules do not demonstrate damage. The study showed the reduction of toxicity of GML nanocapsules by many methods used in antimicrobial therapy.

Keywords

Nanocapsules Hemolytic activity VERO cells Lipid peroxidation 

Notes

Author contribution

LQSL produced and characterized the nanocapsules. PSBO, WPSF, RAV, JLG, and MRS conducted the cytotoxicity and genotoxicity experiments. All authors read and approved the manuscript.

Funding information

This work received financial support from PPGPE/Universidade Franciscana-Probic, CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) (Finance Code 001), and FAPERGS (Fundação de Amparo a Pesquisa do Rio Grande do Sul).

Compliance with ethical standards

The study was approved by the Research Ethics Committee of the Human of Universidade Franciscana (CAAE: 31211214.4.0000.5306).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Agulla J, Brea D, Argibay B, Novo M, Campos F, Sobrino T, Blanco M, Castillo J, Ramos-Cabrer P (2014) Quick adjustment of imaging tracer payload, for in vivo applications of theranostic nanostructures in the brain. Nanomedicine 10:851–858.  https://doi.org/10.1016/j.nano.2013.12.004 CrossRefGoogle Scholar
  2. Anang DM, Rusul G, Bakar J, Ling FH (2007) Effects of lactic acid and lauricidin on the survival of Listeria monocytogenes, Salmonella enteritidis and Escherichia coli O157:H7 in chicken breast stored at 4 °C. Food Control 18:961–969.  https://doi.org/10.1016/j.foodcont.2006.05.015 CrossRefGoogle Scholar
  3. Arunkumar P, Raju B, Vasantharaja R, Vijayaraghavan S, Preetham Kumar B, Jeganathan K, Premkumar K (2015) Near infra-red laser mediated photothermal and antitumor efficacy of doxorubicin conjugated gold nanorods with reduced cardiotoxicity in swiss albino mice. Nanomedicine 11:1435–1444.  https://doi.org/10.1016/j.nano.2015.03.012 CrossRefGoogle Scholar
  4. Barratt GM (2000) Therapeutic applications of colloidal drug carriers. Pharm Sci Technol Today 3:163–171CrossRefGoogle Scholar
  5. Batovska DI, Todorova IT, Tsvetkova IV, Najdenski HM (2009) Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships. Pol J Microbiol 58:43–47Google Scholar
  6. Benvegnú DM, Barcelos RCS, Boufleur N (2012) Haloperidol-loaded polysorbate-coated polymeric nanocapsules decrease its adverse motor side effects and oxidative stress markers in rats. Neurochem Int 61:623–631.  https://doi.org/10.1016/j.neuint.2012.06.015 CrossRefGoogle Scholar
  7. Bergsson G, Arnfinnsson J, Steingrímsson O, Thormar H (2001) Killing of Gram-positive cocci by fatty acids and monoglycerides. APMIS 109:670–678.  https://doi.org/10.1034/j.1600-0463.2001.d01-131.x CrossRefGoogle Scholar
  8. Bouchemal K, Briançon S, Perrier E, Fessi H, Bonnet I, Zydowicz N (2004) Synthesis and characterization of polyurethane and poly(ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification. Int J Pharm 269:89–100.  https://doi.org/10.1016/j.ijpharm.2003.09.025 CrossRefGoogle Scholar
  9. Carrera-Rotllan J, Estrada-Garcia L (1998) Age-dependent changes and interrelations of number of cells and biochemical parameters (glucose, triglycerides, TBARS, calcium, phosphorus) in cultured human vein endothelial cells. Mech Ageing Dev 103:13–26.  https://doi.org/10.1016/S0047-6374(98)00007-4 CrossRefGoogle Scholar
  10. Chanana M, Gliozzi A, Diaspro A, Chodnevskaja I, Huewel S, Moskalenko V, Ulrichs K, Galla HJ, Krol S (2005) Interaction of polyelectrolytes and their composites with living cells. Nano Lett 5:2605–2612.  https://doi.org/10.1021/nl0521219 CrossRefGoogle Scholar
  11. Chen F, Hong H, Goel S, Graves SA, Orbay H, Ehlerding EB, Shi S, Theuer CP, Nickles RJ, Cai W (2015) In vivo tumor vasculature targeting of CuS@MSN based theranostic nanomedicine. ACS Nano 9:3926–3934.  https://doi.org/10.1021/nn507241v CrossRefGoogle Scholar
  12. Choi CW, Kim SC, Hwang SS, Choi BK, Ahn HJ, Lee MY, Park SH, Kim SK (2002) Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci 163:1161–1168.  https://doi.org/10.1016/S0168-9452(02)00332-1 CrossRefGoogle Scholar
  13. Costa F, Dornelles E, Mânica-Cattani MF, et al (2012) Influence of Val16Ala SOD2 polymorphism on the in-vitro effect of clomiphene citrate in oxidative metabolism. Reprod Biomed Online 24:474–481.  https://doi.org/10.1016/j.rbmo.2012.01.009
  14. Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642CrossRefGoogle Scholar
  15. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–R4.  https://doi.org/10.1016/0378-5173(89)90281-0 CrossRefGoogle Scholar
  16. Gali Y, Delezay O, Brouwers J, Addad N, Augustijns P, Bourlet T, Hamzeh-Cognasse H, Arien KK, Pozzetto B, Vanham G (2010) In vitro evaluation of viability, integrity, and inflammation in genital epithelia upon exposure to pharmaceutical excipients and candidate microbicides. Antimicrob Agents Chemother 54:5105–5114.  https://doi.org/10.1128/AAC.00456-10 CrossRefGoogle Scholar
  17. García O, Mandina T, Lamadrid AI, Diaz A, Remigio A, Gonzalez Y, Piloto J, Gonzalez JE, Alvarez A (2004) Sensitivity and variability of visual scoring in the comet assay: results of an inter-laboratory scoring exercise with the use of silver staining. Mutat Res Fundam Mol Mech Mutagen 556:25–34.  https://doi.org/10.1016/j.mrfmmm.2004.06.035 Google Scholar
  18. Ginzburg VV, Balijepalli S (2007) Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett 7:3716–3722.  https://doi.org/10.1021/nl072053l CrossRefGoogle Scholar
  19. Hornung B, Amtmann E, Sauer G (1994) Lauric acid inhibits the maturation of vesicular stomatitis virus. J Gen Virol 75(Pt 2):353–361CrossRefGoogle Scholar
  20. Huang CB, Alimova Y, Myers TM, Ebersole JL (2011) Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch Oral Biol 56:650–654.  https://doi.org/10.1016/j.archoralbio.2011.01.011 CrossRefGoogle Scholar
  21. Inácio ÂS, Mesquita KA, Baptista M, Ramalho-Santos J, Vaz WLC, Vieira OV (2011) In vitro surfactant structure-toxicity relationships: implications for surfactant use in sexually transmitted infection prophylaxis and contraception. PLoS One 6:e19850.  https://doi.org/10.1371/journal.pone.0019850 CrossRefGoogle Scholar
  22. Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 2:23–28.  https://doi.org/10.1128/AAC.2.1.23 CrossRefGoogle Scholar
  23. Kabara JJ, Vrable R (1977) Antimicrobial lipids: natural and synthetic fatty acids and monoglycerides. Lipids 12:753–759.  https://doi.org/10.1007/BF02570908 CrossRefGoogle Scholar
  24. Kristmundsdóttir T, Árnadóttir SG, Bergsson G, Thormar H (1999) Development and evaluation of microbicidal hydrogels containing monoglyceride as the active ingredient. J Pharm Sci 88:1011–1015.  https://doi.org/10.1021/js9900396 CrossRefGoogle Scholar
  25. Li X, Zhao T, Sun L, Aifantis KE, Fan Y, Feng Q, Cui F, Watari F (2016) The applications of conductive nanomaterials in the biomedical field. J Biomed Mater Res - Part A 104:322–339CrossRefGoogle Scholar
  26. Liu P, Cai J, Dong D, Chen Y, Liu X, Wang Y, Zhou Y (2015) Effects of SOX2 on proliferation, migration and adhesion of human dental pulp stem cells. PLoS One 10:e0141346.  https://doi.org/10.1371/journal.pone.0141346 CrossRefGoogle Scholar
  27. Lopes LQS, Santos CG, de Almeida Vaucher R, Gende L, Raffin RP, Santos RCV (2016a) Evaluation of antimicrobial activity of glycerol monolaurate nanocapsules against American foulbrood disease agent and toxicity on bees. Microb Pathog 97:183–188.  https://doi.org/10.1016/j.micpath.2016.05.014 CrossRefGoogle Scholar
  28. Lopes LQS, Santos CG, Vaucher R de A et al (2016b) Nanocapsules with glycerol monolaurate: effects on Candida albicans biofilms. Microb Pathog 97:119–124.  https://doi.org/10.1016/j.micpath.2016.05.016 CrossRefGoogle Scholar
  29. Mainardes RM, Gremião MPD (2012) Nanoencapsulation and characterization of zidovudine on poly(L-lactide) and poly(L-lactide)—poly(ethylene glycol)-blend nanoparticles. J Nanosci Nanotechnol 12:8513–8521.  https://doi.org/10.1166/jnn.2012.6638 CrossRefGoogle Scholar
  30. Mainardes RM, Khalil NM, Gremião MPD (2010) Intranasal delivery of zidovudine by PLA and PLA-PEG blend nanoparticles. Int J Pharm 395:266–271.  https://doi.org/10.1016/j.ijpharm.2010.05.020 CrossRefGoogle Scholar
  31. Mann T (2006) Coconut oil – ideal fat next only to mother’s milk (scanning coconut’s horoscope). Clin Med (Northfield Il) 7:16–19Google Scholar
  32. Mihaylova D, Schalow S (2013) Antioxidant and stabilization activity of a quercetin-containing flavonoid extract obtained from Bulgarian Sophora japonica L. Braz Arch Biol Technol 56:431–438.  https://doi.org/10.1590/S1516-89132013000300011 CrossRefGoogle Scholar
  33. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142.  https://doi.org/10.1016/j.ijpharm.2009.10.018 CrossRefGoogle Scholar
  34. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63.  https://doi.org/10.1016/0022-1759(83)90303-4 CrossRefGoogle Scholar
  35. Nguyen TDT, Pitchaimani A, Aryal S (2016) Engineered nanomedicine with alendronic acid corona improves targeting to osteosarcoma. Sci Rep 6.  https://doi.org/10.1038/srep36707
  36. Nobuko I, Kaeko I, Mamoru E, Eiko F, Minoru M (1980) Identification of shellfish fatty acids and their effects on lipogenic enzymes. Biochim Biophys Acta (BBA)/Lipids Lipid Metab 618:378–382.  https://doi.org/10.1016/0005-2760(80)90255-6 CrossRefGoogle Scholar
  37. Noll KS, Prichard MN, Khaykin A et al (2012) The natural antimicrobial peptide subtilosin acts synergistically with glycerol monolaurate, lauric arginate, and ε-poly-L-lysine against bacterial vaginosis-associated pathogens but not human lactobacilli. Antimicrob Agents Chemother 56:1756–1761.  https://doi.org/10.1128/AAC.05861-11 CrossRefGoogle Scholar
  38. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358.  https://doi.org/10.1016/0003-2697(79)90738-3 CrossRefGoogle Scholar
  39. Panyuta O, Belava V, Fomaidi S, Kalinichenko O, Volkogon M, Taran N (2016) The effect of pre-sowing seed treatment with metal nanoparticles on the formation of the defensive reaction of wheat seedlings infected with the eyespot causal agent. Nanoscale Res Lett 11:92.  https://doi.org/10.1186/s11671-016-1305-0 CrossRefGoogle Scholar
  40. Passeri D, Rinaldi F, Ingallina C, Carafa M, Rossi M, Terranova ML, Marianecci C (2015) Biomedical applications of nanodiamonds: an overview. J Nanosci Nanotechnol 15:972–988.  https://doi.org/10.1166/jnn.2015.9734 CrossRefGoogle Scholar
  41. Pool H, Quintanar D, Figueroa J de D et al (2012) Polymeric nanoparticles as oral delivery systems for encapsulation and release of polyphenolic compounds: impact on quercetin antioxidant activity & bioaccessibility. Food Biophys 7:276–288.  https://doi.org/10.1007/s11483-012-9266-z CrossRefGoogle Scholar
  42. Projan SJ, Brown-Skrobot S, Schlievert PM, Vandenesch F, Novick RP (1994) Glycerol monolaurate inhibits the production of β-lactamase, toxic shock syndrome toxin-1, and other staphylococcal exoproteins by interfering with signal transduction. J Bacteriol 176:4204–4209CrossRefGoogle Scholar
  43. Radad K, Al-Shraim M, Moldzio R, Rausch WD (2012) Recent advances in benefits and hazards of engineered nanoparticles. Environ Toxicol Pharmacol 34:661–672CrossRefGoogle Scholar
  44. Raffin RP, Obach ES, Mezzalira G et al (2003) Nanocápsulas poliméricas secas contendo indometacina: Estudo de formulação e de tolerância gastrintestinal em ratos. Acta Farm Bonaer 22:163–172Google Scholar
  45. Ritschel WA (1996) Microemulsion technology in the reformulation of cyclosporine: the reason behind the pharmacokinetic properties of Neoral. Clin Transpl 10:364–373Google Scholar
  46. Sarciaux JM, Acar L, Sado PA (1995) Using microemulsion formulations for oral drug delivery of therapeutic peptides. Int J Pharm 120:127–136CrossRefGoogle Scholar
  47. Sasidharan A, Monteiro-Riviere NA (2015) Biomedical applications of gold nanomaterials: opportunities and challenges. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:779–796.  https://doi.org/10.1002/wnan.1341 CrossRefGoogle Scholar
  48. Schaffazick SR, Guterres SS, De Lucca Freitas L, Pohlmann AR (2003) Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Quim Nova 26:726–737.  https://doi.org/10.1590/S0100-40422003000500017 CrossRefGoogle Scholar
  49. Schlievert PM, Deringer JR, Kim MH, Projan SJ, Novick RP (1992) Effect of glycerol monolaurate on bacterial growth and toxin production. Antimicrob Agents Chemother 36:626–631.  https://doi.org/10.1128/AAC.36.3.626 CrossRefGoogle Scholar
  50. Shi X, Von Dem Bussche A, Hurt RH et al (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 6:714–719.  https://doi.org/10.1038/nnano.2011.151 CrossRefGoogle Scholar
  51. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191.  https://doi.org/10.1016/0014-4827(88)90265-0 CrossRefGoogle Scholar
  52. Smith MJ, Brown JM, Zamboni WC, Walker NJ (2014) From immunotoxicity to nanotherapy: the effects of nanomaterials on the immune system. Toxicol Sci 138:249–255.  https://doi.org/10.1093/toxsci/kfu005 CrossRefGoogle Scholar
  53. Souza JLS, da Silva AF, Carvalho PHA, Pacheco BS, Pereira CMP, Lund RG (2014) Aliphatic fatty acids and esters: inhibition of growth and exoenzyme production of Candida, and their cytotoxicity in vitro: anti-Candida effect and cytotoxicity of fatty acids and esters. Arch Oral Biol 59:880–886.  https://doi.org/10.1016/j.archoralbio.2014.05.017 CrossRefGoogle Scholar
  54. Tangwatcharin P, Khopaibool P (2012) Inhibitory effects of the combined application of lauric acid and monolaurin with lactic acid against Staphylococcus aureus in pork. ScienceAsia 38:54–63.  https://doi.org/10.2306/scienceasia1513-1874.2012.38.054 CrossRefGoogle Scholar
  55. Tüzüner Ş, Demir MM (2015) Dispersion of organophilic Ag nanoparticles in PS-PMMA blends. Mater Chem Phys 162:692–699.  https://doi.org/10.1016/j.matchemphys.2015.06.044 CrossRefGoogle Scholar
  56. Vaucher RA, de da Motta AS, Brandelli A (2010) Evaluation of the in vitro cytotoxicity of the antimicrobial peptide P34. Cell Biol Int 34:317–323.  https://doi.org/10.1042/CBI20090025 CrossRefGoogle Scholar
  57. Vetter SM, Schlievert PM (2005) Glycerol monolaurate inhibits virulence factor production in Bacillus anthracis. Antimicrob Agents Chemother 49:1302–1305CrossRefGoogle Scholar
  58. Weiss J, Gaysinsky S, Davidson M, McClements J (2009) Nanostructured encapsulation systems: food antimicrobials. In: Global issues in food science and technology, pp 425–479CrossRefGoogle Scholar
  59. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Leonardo Quintana Soares Lopes
    • 1
    • 2
    Email author
  • Pablo Sebastian Britto de Oliveira
    • 3
  • Walter Paixão de Souza Filho
    • 3
  • Rodrigo de Almeida Vaucher
    • 4
  • Janice Luehring Giongo
    • 5
  • Michele Rorato Sagrillo
    • 3
  • Roberto Christ Vianna Santos
    • 1
    • 2
  1. 1.Laboratory of Microbiology ResearchUniversidade FranciscanaSanta MariaBrazil
  2. 2.Post-Graduate Program in NanosciencesUniversidade FranciscanaSanta MariaBrazil
  3. 3.Laboratory of Genetic and Cellular CultureUniversidade FranciscanaSanta MariaBrazil
  4. 4.Laboratory of Research in Biochemistry and Molecular Biology of Microorganisms, Post graduate Program in Biochemistry and BioprospectingUniversidade Federal de PelotasCapão do LeãoBrazil
  5. 5.Pharmacy DepartmentFaculdade AnhangueraPelotasBrazil

Personalised recommendations