Skip to main content

Advertisement

Log in

Abiraterone acetate exerts a cytotoxic effect in human prostate cancer cell lines

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

To study the capability of the CYP17A1 inhibitor abiraterone acetate (AER) to antagonize the androgen receptor (AR) activation in human prostate cancer (PCa) cell lines. T877A-AR-LNCaP, WT-AR-VCaP, AR-negative DU145, and PC3 PCa cell lines were used by MTT and cell count to study the ability of AER and enzalutamide (ENZ) to modify cell viability. The role of ARs in LNCaP was demonstrated through a gene-silencing experiment. The mechanism of AER cytotoxicity in LNCaP cells was studied, as well as the ability of AER to modulate AR gene expression. The in silico docking approach was applied to study the interaction of AER and ENZ with T877A-AR. Through high-performance liquid chromatography, the production of the AER main metabolite Δ4A was studied. AER bound AR in an almost identical manner to that of dihydrotestosterone (DHT). The higher binding energy for AER in T877A-AR could explain the major cytotoxic effect observed in LNCaP cells. The capability of LNCaP cells to synthesize Δ4A could mediate, at least in part, this effect. AER cytotoxicity in LNCaP cells was mainly due to the activation of apoptosis. Further, AER induced modification of AR target gene expression, suggesting a direct effect on AR activity. AER-induced cytotoxicity on PCa cell lines seemed to be mediated by binding with AR. The higher affinity of AER for T877A-AR may suggest a potential role of AER in the management of CRPC carrying this mutation; however, T877A-AR expressing CRPC patients developed AER resistance, probably due to the increase of progesterone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ADT:

Androgen-deprivation therapy

AER:

Abiraterone acetate

AR:

Androgen receptor

CRPC:

Castration-resistant prostate cancer

Δ4A:

Δ4-abiraterone

DHT:

Dihydrotestosterone

ENZ:

Enzalutamide

LBD:

Ligand-binding domain

MTT:

3-(4,5-Dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide

PCa:

Prostate cancer

si-AR:

siRNA targeting a region of an isoform of the AR gene

si-ctrl:

Non-targeting negative control siRNA

References

  • Arrighi N, Bodei S, Lucente A, Michel MC, Zani D, Simeone C, Cunico SC, Spano P, Sigala S (2011) Muscarinic receptors stimulate cell proliferation in the human urothelium-derived cell line UROtsa. Pharmacol Res 64:420–425. https://doi.org/10.1016/j.phrs.2011.06.009

    Article  CAS  PubMed  Google Scholar 

  • Azad AA, Wyatt AW, Haegert A, Le Bihan S, Bell RH, Anderson SA, McConeghy B, Shukin R, Bazov J, Youngren J, Paris P, Thomas G, Small EJ, Wang Y, Gleave ME, Collins CC, Chi KN (2015) Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res 21:2315–2324. https://doi.org/10.1158/1078-0432.CCR-14-2666

    Article  CAS  PubMed  Google Scholar 

  • Battista MC, Guimond MO, Roberge C, Doueik AA, Fazli L, Gleave M, Sabbagh R, Gallo-Payet N (2010) Inhibition of DHCR24/seladin-1 impairs cellular homeostasis in prostate cancer. Prostate:n/a. https://doi.org/10.1002/pros.21126

  • Bedussi F, Galli D, Fragni M, Valcamonico F, Rossini E, Dalla Volta A, Vezzoli S, Roca E, Ferrari V, Lazzari B, Memo M, Sigala S, Berruti A (2017) Amiloride is effective in the management of abiraterone-induced mineralocorticoid excess syndrome without interfering with its antineoplastic activity. Pharmacology 100:261–268. https://doi.org/10.1159/000477547

    Article  CAS  PubMed  Google Scholar 

  • Berruti A, Dalla Volta A (2017) Resistance to hormonal therapy in prostate cancer. Handb Exp Pharmacol. https://doi.org/10.1007/164_2017_21

  • Bhatnagar A, McKay MJ, Crumbaker M, Ahire K, Karuso P, Gurney H, Molloy MP (2018) Quantitation of the anticancer drug abiraterone and its metabolite Δ(4)-abiraterone in human plasma using high-resolution mass spectrometry. J Pharm Biomed Anal. https://doi.org/10.1016/j.jpba.2018.03.012

  • Bohl CE, Miller DD, Chen J, Bell CE, Dalton JT (2005) Structural basis for accommodation of non-steroidal ligands in the androgen receptor. J Biol Chem 280:37747–37754

    Article  CAS  PubMed  Google Scholar 

  • Bowen C, Ju JH, Lee JH, Paull TT, Gelmann EP (2013) Functional activation of ATM by the prostate cancer suppressor NKX3.1. Cell Rep. https://doi.org/10.1016/j.celrep.2013.06.039

  • Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33–39. https://doi.org/10.1038/nm972

    Article  CAS  PubMed  Google Scholar 

  • Chen EJ, Sowalsky AG, Gao S, Cai C, Voznesensky O, Schaefer R, Loda M, True LD, Ye H, Troncoso P, Lis RL, Kantoff PW, Montgomery RB, Nelson PS, Bubley GJ, Balk SP, Taplin ME (2015) Abiraterone treatment in castration-resistant prostate cancer selects for progesterone responsive mutant androgen receptors. Clin Cancer Res 21:1273–1280. https://doi.org/10.1158/1078-0432.CCR-14-1220

    Article  CAS  PubMed  Google Scholar 

  • Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, Henry AM, Joniau S, Lam TB, Mason MD, van der Poel HG, van der Kwast TH, Rouvière O, Wiegel T, Mottet N (2017) EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. https://doi.org/10.1016/j.eururo.2016.08.002

  • Feyerabend S, Saad F, Li T, Ito T, Diels J, Van Sanden S, De Porre P, Roiz J, Abogunrin S, Koufopoulou M, Fizazi K (2018) Survival benefit, disease progression and quality-of-life outcomes of abiraterone acetate plus prednisone versus docetaxel in metastatic hormone-sensitive prostate cancer: a network meta-analysis. Eur J Cancer 103:78–87

    Article  CAS  PubMed  Google Scholar 

  • Fiorentini C, Fragni M, Perego P, Vezzoli S, Bonini SA, Tortoreto M, Galli D, Claps M, Tiberio GA, Terzolo M, Missale C, Memo M, Procopio G, Zaffaroni N, Berruti A, Sigala S (2016) Antisecretive and antitumor activity of abiraterone acetate in human adrenocortical cancer: a preclinical study. J Clin Endocrinol Metab 101:4594–4602

    Article  CAS  PubMed  Google Scholar 

  • Fragni M, Bonini SA, Stabile A, Bodei S, Cristinelli L, Simeone C, Zani D, Spano PF, Berruti A, Memo M, Sigala S (2016a) Inhibition of survivin is associated with zoledronic acid-induced apoptosis of prostate cancer cells. Anticancer Res 36:913–920

    CAS  PubMed  Google Scholar 

  • Fragni M, Bonini SA, Bettinsoli P, Bodei S, Generali D, Bottini A, Spano PF, Memo M, Sigala S (2016b) The miR-21/PTEN/Akt signaling pathway is involved in the anti-tumoral effects of zoledronic acid in human breast cancer cell lines. Naunyn Schmiedeberg’s Arch Pharmacol 389:529–538

    Article  CAS  Google Scholar 

  • Fujimoto N, Mizokami A, Harada S, Matsumoto T (2001) Different expression of androgen receptor coactivators in human prostate. Cancer Res 61:2892–2898

    Google Scholar 

  • Gregory CW, Johnson RT Jr, Mohler JL, French FS, Wilson EM (2001) Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensibility to low androgen. Urology 58:289–294

    Article  Google Scholar 

  • Grossebrummel H, Peter T, Mandelkow R, Weiss M, Muzzio D, Zimmermann U, Walther R, Jensen F, Knabbe C, Zygmunt M, Burchardt M, Stope MB (2016) Cytochrome P450 17A1 inhibitor abiraterone attenuates cellular growth of prostate cancer cells independently from androgen receptor signaling by modulation of oncogenic and apoptotic pathways. Int J Oncol 48:793–800

    Article  CAS  PubMed  Google Scholar 

  • Handratta VD, Vasaitis TS, Njar VC, Gediya LK, Kataria R, Chopra P, Newman D Jr, Farquhar R, Guo Z, Qiu Y, Brodie AM (2005) Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. J Med Chem 48:2972–2984

    Article  CAS  PubMed  Google Scholar 

  • Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25:276–308

    Article  CAS  PubMed  Google Scholar 

  • Hussain M, Fizazi K, Saad F, Rathenborg P, Shore N, Ferreira U, Ivashchenko P, Demirhan E, Modelska K, Phung, Krivoshik A, Sternberg CN (2018) Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N Engl J Med 378:2465–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G, Brigham D, Moon M, Maneval EC, Chen I, Darimont B, Hager JH (2013) A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov 3:1020–1029

    Article  CAS  PubMed  Google Scholar 

  • Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA, Doshi S, Yuan J, Kovats SG, Kim S, Cooke VG, Monahan JE, Stegmeier F, Roberts TM, Sellers WR, Zhou W, Zhu P (2013) An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov 3:1030–1043

    Article  CAS  PubMed  Google Scholar 

  • Li R, Evaul K, Sharma KK, Chang KH, Yoshimoto J, Liu J, Auchus RJ, Sharifi N (2012) Abiraterone inhibits 3β-hydroxysteroid dehydrogenase: a rationale for increasing drug exposure in castration-resistant prostate cancer. Clin Cancer Res 18:3571–3579. https://doi.org/10.1158/1078-0432.CCR-12-0908

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Bishop A, Alyamani M, Garcia JA, Dreicer R, Bunch D, Liu J, Upadhyay SK, Auchus RJ, Sharifi N (2015) Conversion of abiraterone to Δ4A drives anti-tumour activity in prostate cancer. Nature 523:347–351. https://doi.org/10.1038/nature14406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Alyamani M, Li J, Rogacki K, Abazeed M, Upadhyay SK, Balk SP, Taplin ME, Auchus RJ, Sharifi N (2016) Redirecting abiraterone metabolism to fine-tune prostate cancer anti-androgen therapy. Nature. https://doi.org/10.1038/nature17954

  • Liao X, Tang S, Thrasher JB, Griebling TL, Li B (2005) Small-interfering RNA-induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. Mol Cancer Ther 4:505–515

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Xie CC, Zhu Y, Li T, Sun J, Cheng Y, Ewing CM, Dalrymple S, Turner AR, Sun J, Isaacs JT, Chang BL, Zheng SL, Isaacs WB, Xu J (2008) Homozygous deletions and recurrent amplifications implicate new genes involved in prostate cancer. Neoplasia 10:897–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • McCrea E, Sissung TM, Price DK, Chau CH, Figg WD (2016) Androgen receptor variation affects prostate cancer progression and drug resistance. Pharmacol Res 114:152–162. https://doi.org/10.1016/j.phrs.2016.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald S, Brive L, Agus DB, Scher HI, Ely KR (2000) Ligand responsiveness in human prostate cancer: structural analysis of mutant androgen receptors from LNCaP and CWR22 tumors. Cancer Res 60:2317–2322

    CAS  PubMed  Google Scholar 

  • McNamara M, Sweeney C, Antonarakis ES, Armstrong AJ (2018) The evolving landscape of metastatic hormone-sensitive prostate cancer: a critical review of the evidence for adding docetaxel or abiraterone to androgen deprivation. Prostate Cancer Prostatic Dis 21:306–318. https://doi.org/10.1038/s41391-017-0014-9

    Article  CAS  PubMed  Google Scholar 

  • Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, True LD, Nelson PS (2008) Maintenance of intrtumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68:4447–4454. https://doi.org/10.1158/0008-5472.CAN-08-0249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GM, Goosell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (2012) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  Google Scholar 

  • Norris JD, Ellison SJ, Baker JG, Stagg DB, Wardell SE, Park S, Alley HM, Baldi RM, Yllanes A, Andreano KJ, Stice JP, Lawrence SA, Eisner JR, Price DK, Moore WR, Figg WD, McDonnell DP (2017) Androgen receptor antagonism drives cytochrome P450 17a1 inhibitor efficacy in prostate cancer. J Clin Invest 127:2326–2338. https://doi.org/10.1172/JCI87328

    Article  PubMed  PubMed Central  Google Scholar 

  • Poujol N, Wurtz JM, Tahiri B, Lumbroso S, Nicolas JC, Moras D, Sultan C (2000) Specific recognition of androgens by their nuclear receptor. A structure-function study. J Biol Chem 275:24022–24031

    Article  CAS  PubMed  Google Scholar 

  • Richards J, Lim AC, Hay CW, Taylor AE, Wingate A, Nowakowska K, Pezaro C, Carreira S, Goodall J, Arlt W, McEwan IJ, de Bono JS, Attard G (2012) Interactions of abiraterone, eplerenone, and prednisolone with wild-type and mutant androgen receptor: a rationale for increasing abiraterone exposure or combining with MDV3100. Cancer Res 72:2176–2182. https://doi.org/10.1158/0008-5472.CAN-11-3980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roviello G, Sigala S, Sandhu S, Bonetta A, Cappelletti MR, Zanotti L, Bottini A, Sternberg CN, Fox SB, Generali D (2016) Role of the novel generation of androgen receptor pathway targeted agents in the management of castration-resistant prostate cancer: a literature based meta-analysis of randomized trials. Eur J Cancer 61:111–121. https://doi.org/10.1016/j.ejca.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  • Sack JS, Kish KF, Wang C, Attar RM, Kiefer SE, An Y, Wu GY, Scheffler JE, Salvati ME, Krystek SR, Weinmann R, Einspahr HM (2001) Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc Natl Acad Sci U S A 98:4904–4909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schalken J, Fitzpatrick JM (2016) Enzalutamide: targeting the androgen signalling pathway in metastatic castration-resistant prostate cancer. BJU Int. https://doi.org/10.1111/bju.13123

  • Shih JW, Wang LY, Hung CL, Kung HJ, Hsieh CL (2015) Non-coding RNAs in castration-resistant prostate cancer: regulation of androgen receptor signaling and cancer metabolism. Int J Mol Sci 16:28943–28978. https://doi.org/10.3390/ijms161226138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigala S, Tognazzi N, Rizzetti MC, Faraoni I, Missale C, Bonmassar E, Spano P (2002) Nerve growth factor induces the re-expression of functional androgen receptors and p75(NGFR) in the androgen-insensitive prostate cancer cell line DU145. Eur J Endocrinol 147:407–415

    Article  CAS  PubMed  Google Scholar 

  • Sigala S, Bodei S, Missale C, Zani D, Simeone C, Cunico SC, Spano PF (2008) Gene expression profile of prostate cancer cell lines: effect of nerve growth factor treatment. Mol Cell Endocrinol 284:11–20

    Article  CAS  PubMed  Google Scholar 

  • Sirab N, Terry S, Giton F, Caradec J, Chimingqi M, Moutereau S, Vacherot F, de la Taille A, Kouyoumdjian JC, Loric S (2012) Androgens regulate hedgehog signaling and proliferation in androgen-dependent prostate cells. Int J Cancer 131:1297–1306. https://doi.org/10.1002/ijc.27384

    Article  CAS  PubMed  Google Scholar 

  • Soifer HS, Souleimanian N, Wu S, Voskresenskiy AM, Collak FK, Cinar B, Stein CA (2012) Direct regulation of androgen receptor activity by potent CYP17 inhibitors in prostate cancer cells. J Biol Chem 287:3777–3787

    Article  CAS  PubMed  Google Scholar 

  • Steinkamp MP, O’Mahony OA, Brogley M, Rehman H, Lapensee EW, Dhanasekaran S, Hofer MD, Kuefer R, Chinnaiyan A, Rubin MA, Pienta KJ, Robins DM (2009) Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res 69:4434–4442. https://doi.org/10.1158/0008-5472.CAN-08-3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe LM, List K (2017) The role of type II transmembrane serine protease-mediated signaling in cancer. FEBS J. https://doi.org/10.1111/febs.13971

  • Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL (2005) Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 11:4653–4657

    Article  CAS  PubMed  Google Scholar 

  • Toren PJ, Kim S, Pham S, Mangalji A, Adomat H, Guns ES, Zoubeidi A, Moore W, Gleave ME (2015) Anticancer activity of a novel selective CYP17A1 inhibitor in preclinical models of castrate-resistant prostate cancer. Mol Cancer Ther 14:59–69

    Article  CAS  PubMed  Google Scholar 

  • Vasaitis T, Belosay A, Schayowitz A, Khandelwal A, Chopra P, Gediya LK, Guo Z, Fang HB, Njar VC, Brodie AM (2008) Androgen receptor inactivation contributes to antitumor efficacy of 17{alpha}-hydroxylase/17,20-lyase inhibitor 3betahydroxy-17-(1H-benzimidazole-1-yl)androsta5,16-diene in prostate cancer. Mol Cancer Ther 7:2348–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veldscholte J, Ris-Stalpers C, Kuiper GGJM, Jenster G, Berrevoets C, Claassen E, Van Rooij HCJ, Trapman J, Brinkmann AO, Mulder E (1990) Network-based analysis for identification of candidate genes for colorectal cancer progression. Biochem Biophys Res Commun 173:534–540

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yu E (2014) Insulin-like growth factor receptor-1 (IGF-IR) as a target for prostate cancer therapy. Cancer Metastasis Rev 33:607–617. https://doi.org/10.1007/s10555-013-9482-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Shimizu Y, Yoshida T, Maeno A, Kamba T, Inoue T, Nakamura E, Kamoto T, Ogawa O (2005) Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Res 65:9611–9616

    Article  CAS  PubMed  Google Scholar 

  • Zaman N, Giannopoulos PN, Chowdhury S, Bonneil E, Thibault P, Wang E, Trifiro M, Paliouras M (2014) Proteomic-coupled-network analysis of T877A-androgen receptor interactomes can predict clinical prostate cancer outcomes between White (non-Hispanic) and African-American groups. PLoS One 9:e113190. https://doi.org/10.1371/journal.pone.0113190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XY, Malloy PJ, Krishnan AV, Swami S, Navone NM, Peehl DM, Feldman D (2000) Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med 6:703–706

    Article  CAS  PubMed  Google Scholar 

Download references

Authorship contributions

Participated in research design: S. Sigala, D. Galli, A. Berruti, M. Fragni. Conducted experiments: D. Galli, E. Rossini, M. Nardini, M. Zametta, M. Fragni, S. Vezzoli, F. Longhena, A. Bellucci. Contributed new reagents or analytic tools: n.a. Performed data analysis: D. Galli, M. Nardini, S. Vezzoli, M. Fragni. Wrote or contributed to the writing of the manuscript: all authors

Funding

The project was supported by donations of the “Memorial Michelangelo Barcella,” by the “Cremona Rugby Association” with a grant within the “Movember 2015” project and by University of Brescia local grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Sigala.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 365 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fragni, M., Galli, D., Nardini, M. et al. Abiraterone acetate exerts a cytotoxic effect in human prostate cancer cell lines. Naunyn-Schmiedeberg's Arch Pharmacol 392, 729–742 (2019). https://doi.org/10.1007/s00210-019-01622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-019-01622-5

Keywords

Navigation