Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 392, Issue 1, pp 69–79 | Cite as

Characterization of the glucosyltransferase activity of Legionella pneumophila effector SetA

  • Nadezhda Levanova
  • Marcus Steinemann
  • Kira E. Böhmer
  • Silvia Schneider
  • Yury Belyi
  • Andreas Schlosser
  • Klaus Aktories
  • Thomas Jank
Original Article


Legionella pneumophila glucosyltransferase SetA, which is introduced into target cells by a type IV secretion system, affects the intracellular traffic of host cells. Here, we characterized the enzyme activity of the Legionella effector. We report that Asp118 and Arg121 of SetA are essential for glucohydrolase and glucotransferase activities. Exchange of Trp36 to alanine reduced the enzyme activity of SetA. All three amino acids were crucial for the cytotoxic effects of SetA in yeast. We observed that phosphatidylinositol-3-phosphate (PI3P) increased the glucosyltransferase activity of SetA severalfold, while the glucohydrolase activity was not affected. In the presence of PI3P, we observed the glucosylation of actin, vimentin and the chaperonin CCT5 in the cytosolic fraction of target cells. Studies on the functional consequences of glucosylation of skeletal muscle α-actin in vitro revealed inhibition of actin polymerization by glucosylation.


Legionella pneumophila effector SetA Glucosylation Enzyme activity Actin polymerization Vimentin CCT5 


Author contributions

KA and TJ were responsible for the study concept, design and interpretation of data. NL, MS, KEB, SS and YB performed experiments and analysed data. AS was responsible for MS data. All authors critically reviewed and revised content and approved the final version for publication.

Funding Information

This study was financially supported by the Deutsche Forschungsgemeinschaft (project AK6/24-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

210_2018_1562_MOESM1_ESM.pdf (96 kb)
ESM 1 (PDF 96.2 kb)


  1. Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392CrossRefGoogle Scholar
  2. Aktories K, Barth H (2004) The actin-ADP-ribosylating Clostridium botulinum C2 toxin. Anaerobe 10:101–105CrossRefGoogle Scholar
  3. Belyi I, Popoff MR, Cianciotto NP (2003) Purification and characterization of a UDP-glucosyltransferase produced by legionella pneumophila. Infect Immun 71:181–186CrossRefGoogle Scholar
  4. Belyi Y, Jank T, Aktories K (2011) Effector glycosyltransferases in legionella. Front Microbiol 2:76. CrossRefGoogle Scholar
  5. Belyi Y, Niggeweg R, Opitz B, Vogelsgesang M, Hippenstiel S, Wilm M, Aktories K (2006) Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci U S A 103:16953–16958CrossRefGoogle Scholar
  6. Belyi Y, Tabakova I, Stahl M, Aktories K (2008) Lgt: a family of cytotoxic glucosyltransferases produced by legionella pneumophila. J Bacteriol 190:3026–3035CrossRefGoogle Scholar
  7. Belyy A, Tabakova I, Lang AE, Jank T, Belyi Y, Aktories K (2015) Roles of Asp179 and Glu270 in ADP-ribosylation of actin by Clostridium perfringens iota toxin. PLoS One 10:e0145708. CrossRefGoogle Scholar
  8. Bitar DM, Molmeret M, Abu KY (2004) Molecular and cell biology of Legionella pneumophila. Int J Med Microbiol 293:519–527CrossRefGoogle Scholar
  9. Boeke JD, Trueheart J, Natsoulis G, Fink GR (1987) 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol 154:164–175CrossRefGoogle Scholar
  10. Cavallius J, Merrick WC (1998) Site-directed mutagenesis of yeast eEF1A. Viable Mutants Altered Nucleotide Specificity J Biol Chem 273:28752–28758Google Scholar
  11. Chen Y, Tascón I, Neunuebel MR, Pallara C, Brady J, Kinch LN, Fernández-Recio J, Rojas AL, Machner MP, Hierro A (2013) Structural basis for Rab1 de-AMPylation by the Legionella pneumophila effector SidD. PLoS Pathog 9:e1003382. CrossRefGoogle Scholar
  12. Ensminger AW, Isberg RR (2009) Legionella pneumophila dot/Icm translocated substrates: a sum of parts. Curr Opin Microbiol 12:67–73. CrossRefGoogle Scholar
  13. Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev 15:506–526CrossRefGoogle Scholar
  14. Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534CrossRefGoogle Scholar
  15. Goody PR, Heller K, Oesterlin LK, Muller MP, Itzen A, Goody RS (2012) Reversible phosphocholination of Rab proteins by legionella pneumophila effector proteins. EMBO J 31:1774–1784. CrossRefGoogle Scholar
  16. Gülke I, Pfeifer G, Liese J, Fritz M, Hofmann F, Aktories K, Barth H (2001) Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Infect Immun 69:6004–6011CrossRefGoogle Scholar
  17. Heidtman M, Chen EJ, Moy MY, Isberg RR (2009) Large-scale identification of legionella pneumophila dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11:230–248. CrossRefGoogle Scholar
  18. Horwitz MA, Silverstein SC (1980) Legionnaires’ disease bacterium (legionella pneumophila) multiples intracellularly in human monocytes. J Clin Invest 66:441–450CrossRefGoogle Scholar
  19. Isaac DT, Isberg R (2014) Master manipulators: an update on Legionella pneumophila Icm/dot translocated substrates and their host targets. Future Microbiol 9:343–359. CrossRefGoogle Scholar
  20. Isberg RR, O'Connor TJ, Heidtman M (2009) The legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7:13–24. CrossRefGoogle Scholar
  21. Jank T, Aktories K (2008) Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol 16:222–229CrossRefGoogle Scholar
  22. Jank T, Bohmer KE, Tzivelekidis T, Schwan C, Belyi Y, Aktories K (2012) Domain organization of legionella effector SetA. Cell Microbiol 14:852–868. CrossRefGoogle Scholar
  23. Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555. CrossRefGoogle Scholar
  24. Lu W et al (2010) Structural basis of the action of glucosyltransferase Lgt1 from Legionella pneumophila. J Mol Biol 396:321–331. CrossRefGoogle Scholar
  25. Mihai GE, Streller A, Haneburger I, Hilbi H, Vetter IR, Goody RS, Itzen A (2013) Mechanism of Rab1b deactivation by the legionella pneumophila GAP LepB. EMBO Rep 14:199–205. CrossRefGoogle Scholar
  26. Mukherjee S, Liu X, Arasaki K, McDonough J, Galan JE, Roy CR (2011) Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477:103–106. CrossRefGoogle Scholar
  27. Muller MP, Peters H, Blumer J, Blankenfeldt W, Goody RS, Itzen A (2010) The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329:946–949. CrossRefGoogle Scholar
  28. Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:679–682CrossRefGoogle Scholar
  29. Neunuebel MR, Chen Y, Gaspar AH, Backlund PS Jr, Yergey A, Machner MP (2011) De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333:453–456. CrossRefGoogle Scholar
  30. Sakurai J, Nagahama M, Oda M, Tsuge H, Kobayashi K (2009) Clostridium perfringens iota-toxin: structure and function. Toxins (Basel) 1:208–228. CrossRefGoogle Scholar
  31. Schering B, Bärmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosylation of skeletal muscle and non- muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171:225–229CrossRefGoogle Scholar
  32. Sherwood RK, Roy CR (2016) Autophagy evasion and endoplasmic reticulum subversion: the yin and yang of Legionella intracellular infection. Annu Rev Microbiol 70:413–433. CrossRefGoogle Scholar
  33. Steiner B, Weber S, Hilbi H (2017) Formation of the Legionella-containing vacuole: phosphoinositide conversion. GTPase Modulation ER Dynamics Int J Med Microbiol 308:49–57. CrossRefGoogle Scholar
  34. Swanson MS, Hammer BK (2000) Legionella pneumophila pathogesesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54:567–613CrossRefGoogle Scholar
  35. Tan Y, Arnold RJ, Luo ZQ (2011) Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci U S A 108:21212–21217. CrossRefGoogle Scholar
  36. Vandekerckhove J, Schering B, Bärmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225:48–52CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of FreiburgFreiburgGermany
  2. 2.Faculty of BiologyUniversity of FreiburgFreiburgGermany
  3. 3.Gamaleya Research Centre for Epidemiology and MicrobiologyMoscowRussia
  4. 4.Rudolf Virchow Center for Experimental BiomedicineUniversity of WürzburgWürzburgGermany
  5. 5.Centre for Biological Signalling Studies (BIOSS)University of FreiburgFreiburgGermany

Personalised recommendations