Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 392, Issue 1, pp 55–68 | Cite as

Anti-inflammatory and antinociceptive activities of the leaf methanol extract of Miconia minutiflora (Bonpl.) DC. and characterization of compounds by UPLC-DAD-QTOF-MS/MS

  • Aline Stamford S. G. Gatis-Carrazzoni
  • Fernanda Virgínia Barreto Mota
  • Tonny Cley Campos Leite
  • Tatiane Bezerra de Oliveira
  • Sandra Cabral da Silva
  • Isla Vanessa Alves Bastos
  • Maria Bernadete de Souza Maia
  • Pedro Silvino Pereira
  • Pedro Paulo Marcelino Neto
  • Earl Celestino de Oliveira Chagas
  • Tania Maria Sarmento Silva
  • Márcia Silva do Nascimento
  • Teresinha Gonçalves da SilvaEmail author
Original Article
  • 87 Downloads

Abstract

Some species of the genus Miconia are used in Brazilian folk medicine as analgesic and anti-inflammatory; however, several species of this genus are still poorly studied. Therefore, the aims of this study were to investigate the phytochemistry characterization by UPLC-DAD-QTOF-MS/MS, acute toxicity, anti-inflammatory and antinociceptive properties of Miconia minutiflora (Bonpl.) DC. The methanol extract of M. minutiflora (Mm-MeOH) was subjected to ultra-high-performance liquid chromatography (UPLC-DAD-QTOF-MS/MS) for the identification of the main phytocompounds. The anti-inflammatory properties of the extracts were studied using several inflammation models induced by carrageenan and acetic acid-induced vascular permeability. Antinociceptive effects of Mm-MeOH were assessed in nociception induced by intraperitoneal acetic acid or subplantar formalin injection. The role of α-adrenergic, cholinergic, and opioid receptors in modulating the extract’s antinociceptive activity was determined. Analyses by UPLC-DAD-QTOF-MS/MS revealed the presence of ellagic acid, gallotannin, and terpenes in the methanol extract. Mm-MeOH (100 mg/kg) reduced carrageenan-induced paw edema and vascular permeability and inhibited leukocyte migration toward the air pouch and pleural cavity. Furthermore, Mm-MeOH decreased tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels. Administration of Mm-MeOH reduced the number of writhes by 58.9% and increased the pain threshold in the formalin test. The anti-inflammatory action mechanism of Mm-MeOH is associated with inhibition of proinflammatory cytokines TNF-α and IL-1β, whereas the antinociceptive actions involve peripheral and central mechanisms with participation of α2-adrenergic receptors. These effects may be attributed to the presence of polyphenolics in the extract.

Keywords

Polyphenolics Melastomataceae α-Adrenergic receptors Cytokines Pain 

Notes

Author contribution statement

ASC and TGS conceived and designed the research. ASC, FVBM, TBO, SCS, and IVAB conducted the experiments. ECOC collected and identified the plant. TCCL was responsible for extract preparations. ERG, MBSM, TMSS, and MSN contributed on analytical tools like UPLC and analyzed data. TGS and PSP wrote the manuscript. All authors read and approved the manuscript.

Funding information

This work was financially supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE) (Grant no. PRONEM APQ-0741106/2014), and CAPES, Brazil.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Arnhold J (2004) Properties, functions, and secretion of human myeloperoxidase. Biochemistry (Mosc) 69:4–9CrossRefGoogle Scholar
  2. Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Investig Dermatol 78:206–209CrossRefGoogle Scholar
  3. Celotto AC, Nazario DZ, Spessoto M de A et al (2003) Evaluation of the in vitro antimicrobial activity of crude extracts of three Miconia species. Braz J Microbiol 34:339–340.  https://doi.org/10.1590/S1517-83822003000400010 CrossRefGoogle Scholar
  4. Choi J-H, Jung B-H, Kang O-H, Choi HJ, Park PS, Cho SH, Kim YC, Sohn DH, Park H, Lee JH, Kwon DY (2006) The anti-inflammatory and anti-nociceptive effects of ethyl acetate fraction of cynanchi paniculati radix. Biol Pharm Bull 29:971–975CrossRefGoogle Scholar
  5. Clausing G, Renner SS (2001) Molecular phylogenetics of Melastomataceae and Memecylaceae: implications for character evolution. Am J Bot 88:486–498CrossRefGoogle Scholar
  6. Cunha WR, Silva MLA, dos Santos FM, Montenegro ÍM, Oliveira ARA, Tavares HR, Leme dos Santos HS, da Silva Bizário JC (2008) In vitro inhibition of tumor cell growth by Miconia fallax. Pharm Biol 46:292–294.  https://doi.org/10.1080/13880200701741245 CrossRefGoogle Scholar
  7. Dalmarco EM, Medeiros YS, Fröde TS (2007) Cyclosporin A inhibits CD11a/CD18 adhesion molecules due to inhibition of TNFalpha and IL-1 beta levels in the mouse model of pleurisy induced by carrageenan. Cell Adhes Migr 2:231–235CrossRefGoogle Scholar
  8. Deraedt R, Jouquey S, Delevallée F, Flahaut M (1980) Release of prostaglandins E and F in an algogenic reaction and its inhibition. Eur J Pharmacol 61:17–24CrossRefGoogle Scholar
  9. Fracassetti D, Costa C, Moulay L, Tomás-Barberán FA (2013) Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia). Food Chem 139:578–588.  https://doi.org/10.1016/j.foodchem.2013.01.121 CrossRefGoogle Scholar
  10. Fröde TS, Medeiros YS (2001) Myeloperoxidase and adenosine-deaminase levels in the pleural fluid leakage induced by carrageenan in the mouse model of pleurisy. Mediat Inflamm 227:223–227.  https://doi.org/10.1080/09629350120080429 CrossRefGoogle Scholar
  11. Fröde TS, Souza GEP, Calixto JB (2001) The modulatory role played by TNF-α and IL-1β in the inflammatory responses induced by carrageenan in the mouse model of pleurisy. Cytokine 13:162–168.  https://doi.org/10.1006/cyto.2000.0816 CrossRefGoogle Scholar
  12. Gainok J, Daniels R, Golembiowski D, Kindred P, Post L, Strickland R, Garrett N (2011) Investigation of the anti-inflammatory, antinociceptive effect of ellagic acid as measured by digital paw pressure via the Randall-Selitto meter in male Sprague-Dawley rats. AANA J 79:S28–S34Google Scholar
  13. García M, Fernández M, Alvarez A, Saenz M (2004) Antinociceptive and anti-inflammatory effect of the aqueous extract from leaves of Pimenta racemosa var. ozua (Mirtaceae). J Ethnopharmacol 91:69–73.  https://doi.org/10.1016/j.jep.2003.11.018 CrossRefGoogle Scholar
  14. Guldbrandsen N, De Mieri M, Gupta M, Seiser T, Wiebe C, Dickhaut J, Reingruber R, Sorgenfrei O, Hamburger M (2015) Screening of panamanian plant extracts for pesticidal properties and HPLC-Based identification of active compounds Sci Pharm 83:353–367  https://doi.org/10.3797/scipharm.1410-10
  15. Gunatilaka AA, Berger JM, Evans R et al (2001) Isolation, synthesis, and structure-activity relationships of bioactive benzoquinones from Miconia lepidota from the Suriname rainforest. J Nat Prod 64:2–5CrossRefGoogle Scholar
  16. Houser KR, Johnson DK, Ishmael FT (2012) Anti-inflammatory effects of methoxyphenolic compounds on human airway cells. J Inflamm 9:6.  https://doi.org/10.1186/1476-9255-9-6 CrossRefGoogle Scholar
  17. Hukkanen AT, Kokko HI, Buchala AJ, McDougall GJ, Stewart D, Kärenlampi SO, Karjalainen RO (2007) Benzothiadiazole induces the accumulation of phenolics and improves resistance to powdery mildew in strawberries. J Agric Food Chem 55:1862–1870.  https://doi.org/10.1021/jf063452p CrossRefGoogle Scholar
  18. Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–114CrossRefGoogle Scholar
  19. Impellizzeri D, Esposito E, Mazzon E, Paterniti I, di Paola R, Bramanti P, Cuzzocrea S (2011) Effect of apocynin, a NADPH oxidase inhibitor, on acute lung inflammation. Biochem Pharmacol 81:636–648.  https://doi.org/10.1016/j.bcp.2010.12.006 CrossRefGoogle Scholar
  20. Jung SM, Kim KW, Yang C-W, Park SH, Ju JH (2014) Cytokine-mediated bone destruction in rheumatoid arthritis. J Immunol Res 2014:1–15.  https://doi.org/10.1155/2014/263625 CrossRefGoogle Scholar
  21. Kim JY, Hwang YP, Kim DH et al (2006) Inhibitory effect of the saponins derived from roots of Platycodon grandiflorum on carrageenan-induced inflammation. Biosci Biotechnol Biochem 70(4):858–864.  https://doi.org/10.1271/bbb.70.858 CrossRefGoogle Scholar
  22. Koo H-J, Lim K-H, Jung H-J, Park E-H (2006) Anti-inflammatory evaluation of gardenia extract, geniposide and genipin. J Ethnopharmacol 103:496–500.  https://doi.org/10.1016/j.jep.2005.08.011 CrossRefGoogle Scholar
  23. Koster R, Anderson M, Beer DEJ (1959) Acetic acid for analgesic screening. Proc Soc Exp Biol Med 18:412–415.  https://doi.org/10.12691/ajbr-3-4-2 Google Scholar
  24. Kroes B, van den Berg A, Quarles van Ufford H, van Dijk H, Labadie R (1992) Anti-inflammatory activity of gallic acid. Planta Med 58:499–504.  https://doi.org/10.1055/s-2006-961535 CrossRefGoogle Scholar
  25. Küpeli E, Sahin FP, Yeşilada E et al (2007) In vivo anti-inflammatory and antinociceptive activity evaluation of phenolic compounds from Sideritis stricta. Z Naturforsch C 62:519–525CrossRefGoogle Scholar
  26. Murugan R, Parimelazhagan T (2013) Study of anti-nociceptive, anti-inflammatory properties and phytochemical profiles of Osbeckia parvifolia Arn. (Melastomataceae). Ind Crop Prod 51:360–369.  https://doi.org/10.1016/j.indcrop.2013.09.035 CrossRefGoogle Scholar
  27. Nantel F, Denis D, Gordon R, Northey A, Cirino M, Metters KM, Chan CC (1999) Distribution and regulation of cyclooxygenase-2 in carrageenan-induced inflammation. Br J Pharmacol 128:853–859.  https://doi.org/10.1038/sj.bjp.0702866 CrossRefGoogle Scholar
  28. Niemegeers CJ, Verbruggen FJ, Janssen PA (1964) Effect of various drugs on carrageenin-induced oedema in the rat hind paw. J Pharm Pharmacol 16:810–816CrossRefGoogle Scholar
  29. Nualkaew S, Rattanamanee K, Thongpraditchote S, Wongkrajang Y, Nahrstedt A (2009) Anti-inflammatory, analgesic and wound healing activities of the leaves of Memecylon edule Roxb. J Ethnopharmacol 121:278–281.  https://doi.org/10.1016/j.jep.2008.10.034 CrossRefGoogle Scholar
  30. OECD (2001) Test no. 423: acute oral toxicity—acute toxic class method. Method OECD Publ 1–14Google Scholar
  31. Patrono C, Rocca B (2009) Nonsteroidal antiinflammatory drugs: past, present and future. Pharmacol Res 59:285–289.  https://doi.org/10.1016/j.phrs.2009.01.011 CrossRefGoogle Scholar
  32. Penido C, Costa KA, Futuro DO, Paiva SR, Kaplan MAC, Figueiredo MR, Henriques MGMO (2006) Anti-inflammatory and anti-ulcerogenic properties of Stachytarpheta cayennensis (L.C. Rich) Vahl. J Ethnopharmacol 104:225–233.  https://doi.org/10.1016/j.jep.2005.09.006 CrossRefGoogle Scholar
  33. Pereira R, Santos Medeiros Y, Fröde TS (2006) Antiinflammatory effects of tacrolimus in a mouse model of pleurisy. Transpl Immunol 16:105–111.  https://doi.org/10.1016/j.trim.2006.04.001 CrossRefGoogle Scholar
  34. Pieroni LG, de Rezende FM, Ximenes VF, Dokkedal AL (2011) Antioxidant activity and total phenols from the methanolic extract of Miconia albicans (Sw.) Triana leaves. Molecules 16:9439–9450.  https://doi.org/10.3390/molecules16119439 CrossRefGoogle Scholar
  35. Procházková D, Boušová I, Wilhelmová N (2011) Antioxidant and pro-oxidant properties of flavonoids. Fitoterapia 82(11):513–523.  https://doi.org/10.1016/j.fitote.2011.01.018 CrossRefGoogle Scholar
  36. Ribeiro RA, Vale ML, Thomazzi SM, Paschoalato ABP, Poole S, Ferreira SH, Cunha FQ (2000) Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. Eur J Pharmacol 387:111–118CrossRefGoogle Scholar
  37. Rodrigues J, Rinaldo D, dos Santos LC, Vilegas W (2007) An unusual C6–C6″ linked flavonoid from Miconia cabucu (Melastomataceae). Phytochemistry 68:1781–1784.  https://doi.org/10.1016/j.phytochem.2007.04.020 CrossRefGoogle Scholar
  38. Rodrigues J, Michelin DC, Rinaldo D, Zocolo GJ, dos Santos LC, Vilegas W, Salgado HRN (2008) Antimicrobial activity of Miconia species (Melastomataceae). J Med Food 11:120–126.  https://doi.org/10.1089/jmf.2007.557 CrossRefGoogle Scholar
  39. Rodrigues J, Rinaldo D, da Silva MA, dos Santos LC, Vilegas W (2011) Secondary metabolites of Miconia rubiginosa. J Med Food 14:834–839.  https://doi.org/10.1089/jmf.2010.0157 CrossRefGoogle Scholar
  40. Saleh TS, Calixto JB, Medeiros YS (1996) Anti-inflammatory effects of theophylline, cromolyn and salbutamol in a murine model of pleurisy. Br J Pharmacol 118:811–819CrossRefGoogle Scholar
  41. Santos SAO, Freire CSR, Domingues MRM et al (2011) Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography-mass spectrometry. J Agric Food Chem 59(17):9386–9393.  https://doi.org/10.1021/jf201801q CrossRefGoogle Scholar
  42. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P (1994) Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci U S A 91:12013–12017CrossRefGoogle Scholar
  43. Serna D, Martínez J (2015) Phenolics and polyphenolics from Melastomataceae species. Molecules 20:17818–17847.  https://doi.org/10.3390/molecules201017818 CrossRefGoogle Scholar
  44. Serpeloni JM, Barcelos GRM, Mori MP et al (2011) Cytotoxic and mutagenic evaluation of extracts from plant species of the Miconia genus and their influence on doxorubicin-induced mutagenicity: an in vitro analysis. Exp Toxicol Pathol 63:499–504.  https://doi.org/10.1016/j.etp.2010.03.011 CrossRefGoogle Scholar
  45. Sherwood ER, Toliver-Kinsky T (2004) Mechanisms of the inflammatory response. Best Pract Res Clin Anaesthesiol 18:385–405CrossRefGoogle Scholar
  46. Sierralta F, Naquira D, Pinardi G, Miranda HF (1996) Alpha-adrenoceptor and opioid receptor modulation of clonidine-induced antinociception. Br J Pharmacol 119:551–554CrossRefGoogle Scholar
  47. Sobolewski C, Legrand N, Morceau F, Diederich M (2010) Inflammation: novel arrows for an ancient target. Biochem Pharmacol 80:1769–1770.  https://doi.org/10.1016/j.bcp.2010.06.026 CrossRefGoogle Scholar
  48. Spessoto MA, Ferreira DS, Crotti AEM, Silva MLA, Cunha WR (2003) Evaluation of the analgesic activity of extracts of Miconia rubiginosa (Melastomataceae). Phytomedicine 10:606–609.  https://doi.org/10.1078/094471103322331629 CrossRefGoogle Scholar
  49. Stamford A, Guerra S, Jussara D et al (2011) International immunopharmacology anti-inflammatory and antinociceptive activities of indole–imidazolidine derivatives. Int Immunopharmacol 11:1816–1822.  https://doi.org/10.1016/j.intimp.2011.07.010 CrossRefGoogle Scholar
  50. Strebel S, Gurzeler JA, Schneider MC, Aeschbach A, Kindler CH (2004) Small-dose intrathecal clonidine and isobaric bupivacaine for orthopedic surgery: a dose-response study. Anesth Analg 99:1231–1238.  https://doi.org/10.1213/01.ANE.0000133580.54026.65 CrossRefGoogle Scholar
  51. Sulaiman MR, Somchit MN, Israf DA, Ahmad Z, Moin S (2004) Antinociceptive effect of Melastoma malabathricum ethanolic extract in mice. Fitoterapia 75:667–672.  https://doi.org/10.1016/j.fitote.2004.07.002 CrossRefGoogle Scholar
  52. Tarawneh AH, León F, Ibrahim MA, Pettaway S, McCurdy CR, Cutler SJ (2014) Flavanones from Miconia prasina. Phytochem Lett 7:130–132.  https://doi.org/10.1016/j.phytol.2013.11.001 CrossRefGoogle Scholar
  53. Taylor J, Mellstrom B, Fernaud I, Naranjo JR (1998) Metamizol potentiates morphine effects on visceral pain and evoked c-Fos immunoreactivity in spinal cord. Eur J Pharmacol 351:39–47CrossRefGoogle Scholar
  54. Valverde A (2010) Alpha-2 agonists as pain therapy in horses. Vet Clin North Am Equine Pract 26:515–532.  https://doi.org/10.1016/j.cveq.2010.07.003 CrossRefGoogle Scholar
  55. Vasconcelos MAL, Ferreira DS, Andrade e Silva ML et al (2003) Analgesic effects of crude extracts of Miconia albicans (Melastomataceae). Boll Chim Farm 142:333–335Google Scholar
  56. Vasconcelos MAL, Royo VA, Ferreira DS, Crotti AEM, e Silva MLA, Carvalho JCT, Bastos JK, Cunha WR (2006) In vivo analgesic and anti-inflammatory activities of ursolic acid and oleanoic acid from Miconia albicans (Melastomataceae). Z Naturforsch C 61:477–482CrossRefGoogle Scholar
  57. Whittle BA (1964) The use of changes in capillary permeability in mice to distinguish between narcotic and nonnarcotic alalgesics. Br J Pharmacol Chemother 22:246–253CrossRefGoogle Scholar
  58. Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc Soc Exp Biol Med 111:544–547CrossRefGoogle Scholar
  59. Wyrepkowski CC, Costa DLMG, Sinhorin AP et al (2014) Characterization and quantification of the compounds of the ethanolic extract from Caesalpinia ferrea stem bark and evaluation of their mutagenic activity. Molecules 19(10):16039–16057.  https://doi.org/10.3390/molecules191016039 CrossRefGoogle Scholar
  60. Yoshida T, Amakura Y, Yoshimura M (2010) Structural features and biological properties of ellagitannins in some plant families of the order Myrtales. Int J Mol Sci 11:79–106.  https://doi.org/10.3390/ijms11010079 CrossRefGoogle Scholar
  61. Yu Y-M, Wang Z-H, Liu C-H, Chen C-S (2007) Ellagic acid inhibits IL-1β-induced cell adhesion molecule expression in human umbilical vein endothelial cells. Br J Nutr 97:692.  https://doi.org/10.1017/S0007114507666409 CrossRefGoogle Scholar
  62. Zhang Z, ElSohly HN, Li X-C et al (2003) Flavanone glycosides from Miconia trailii. J Nat Prod 66:39–41.  https://doi.org/10.1021/np020429z CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aline Stamford S. G. Gatis-Carrazzoni
    • 1
  • Fernanda Virgínia Barreto Mota
    • 1
  • Tonny Cley Campos Leite
    • 1
    • 2
  • Tatiane Bezerra de Oliveira
    • 1
  • Sandra Cabral da Silva
    • 1
  • Isla Vanessa Alves Bastos
    • 1
  • Maria Bernadete de Souza Maia
    • 3
  • Pedro Silvino Pereira
    • 1
  • Pedro Paulo Marcelino Neto
    • 1
  • Earl Celestino de Oliveira Chagas
    • 4
  • Tania Maria Sarmento Silva
    • 5
    return OK on get
  • Márcia Silva do Nascimento
    • 1
  • Teresinha Gonçalves da Silva
    • 1
    Email author
  1. 1.Laboratório de Prospecção Farmacotoxicológica de Produtos Bioativos (Biofarmatox), Departamento de AntibióticosFederal University of Pernambuco (UFPE)RecifeBrazil
  2. 2.Instituto Federal de Educação, Ciência e Tecnologia de PernambucoIFPERecifeBrazil
  3. 3.Departamento de Fisiologia e FarmacologiaUniversidade Federal de Pernambuco (UFPE)RecifeBrazil
  4. 4.Universidade Estadual de Feira de SantanaFeira de SantanaBrazil
  5. 5.Departamento de QuímicaUniversidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations