Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 391, Issue 11, pp 1203–1219 | Cite as

Cinnamaldehyde exerts vasculoprotective effects in hypercholestrolemic rabbits

  • Omnia A. A. Nour
  • George S. G. Shehatou
  • Mona Abdel Rahim
  • Mohammed S. El-Awady
  • Ghada M. Suddek
Original Article

Abstract

The effects of cinnamaldehyde (CIN), a commonly consumed food flavor, against high-cholesterol diet (HCD)-induced vascular damage in rabbits were evaluated. Male New Zealand rabbits (n = 24) were allocated to four groups at random: control, fed with standard rabbit chow; CIN, fed with standard diet and administered CIN; HCD, fed with 1% cholesterol-enriched diet; and HCD-CIN, fed with HCD and treated with CIN. CIN was orally given at a dose of (10 mg/kg/day) concomitantly with each diet type from day 1 until the termination of the experimental protocol (4 weeks). HCD elicited significant elevations in serum levels of total cholesterol (TC), triglycerides (TGs), and high- and low-density lipoprotein cholesterol (HDL-C and LDL-C, respectively) compared with control rabbits. Moreover, aortic levels of nitric oxide metabolites (NOx) and antioxidant enzyme activities were significantly lower, while aortic levels of malondialdehyde (MDA) and myeloperoxidase (MPO) activity were significantly higher, in HCD-fed rabbits relative to control animals. CIN administration mitigated or completely reversed HCD-induced metabolic alterations, vascular oxidative stress, and inflammation. Moreover, CIN ameliorated HCD-induced vascular functional and structural irregularities. Aortic rings from HCD-CIN group showed improved relaxation to acetylcholine compared to aortas from HCD group. Moreover, CIN decreased atherosclerotic lipid deposition and intima/media (I/M) ratio of HCD aortas. CIN-mediated effects might be related to its ability to attenuate the elevated aortic mRNA expression of cholesteryl ester transfer protein (CETP) and MPO in HCD group. Interestingly, the vasculoprotective effects of CIN treatment in the current study do not seem to be mediated via Nrf2-dependent mechanisms. In conclusion, CIN may mitigate the development of atherosclerosis in hypercholestrolemic rabbits via cholesterol-lowering, antiinflammatory and antioxidant activities.

Keywords

Cinnamaldehyde Cholesterol Rabbits Lipid profile Oxidative stress CETP Nrf2 Endothelial dysfunction 

Notes

Author contribution statement

ON, GS, ME, and GMS conceived and designed research. ON, GS, and ME conducted experiments. GS analyzed data. ON and GS wrote the manuscript. GS, ME, and GMS revised the manuscript. MA performed pathological assessments. All authors read and approved the manuscript.

Compliance with ethical standards

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

The authors declare no conflict of interest.

References

  1. Abeysekera W, Arachchige SPG, Ratnasooriya WD (2017) Bark extracts of Ceylon cinnamon possess antilipidemic activities and bind bile acids in vitro. Evid Based Complement Alternat Med 2017:7347219PubMedPubMedCentralGoogle Scholar
  2. Akilen R, Pimlott Z, Tsiami A, Robinson N (2013) Effect of short-term administration of cinnamon on blood pressure in patients with prediabetes and type 2 diabetes. Nutrition 29(10):1192–1196CrossRefGoogle Scholar
  3. Anbar HS, Shehatou GS, Suddek GM, Gameil NM (2016) Comparison of the effects of levocetirizine and losartan on diabetic nephropathy and vascular dysfunction in streptozotocin-induced diabetic rats. Eur J Pharmacol 780:82–92CrossRefGoogle Scholar
  4. Ashino T, Yamamoto M, Numazawa S (2016) Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury. Sci Rep 6:26291CrossRefGoogle Scholar
  5. Aydin S, Uzun H, Sozer V, Altug T (2009) Effects of atorvastatin therapy on protein oxidation and oxidative DNA damage in hypercholesterolemic rabbits. Pharmacol Res 59(4):242–247CrossRefGoogle Scholar
  6. Barter PJ, Hopkins GJ, Calvert GD (1982) Transfers and exchanges of esterified cholesterol between plasma lipoproteins. Biochem J 208(1):1–7CrossRefGoogle Scholar
  7. Blaak EE, Van Baak MA, Kemerink GJ, Pakbiers MT, Heidendal GA, Saris WH (1994) Beta-adrenergic stimulation of energy expenditure and forearm skeletal muscle metabolism in lean and obese men. Am J Phys 267(2 Pt 1):E306–E315Google Scholar
  8. Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ (1999) Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem 274(45):32512–32519CrossRefGoogle Scholar
  9. Bories PN, Bories C (1995) Nitrate determination in biological fluids by an enzymatic one-step assay with nitrate reductase. Clin Chem 41(6 Pt 1):904–907PubMedGoogle Scholar
  10. Chao LK, Hua KF, Hsu HY, Cheng SS, Lin IF, Chen CJ, Chen ST, Chang ST (2008) Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling. Food Chem Toxicol 46(1):220–231CrossRefGoogle Scholar
  11. de Grooth GJ, Smilde TJ, Van Wissen S, Klerkx AH, Zwinderman AH, Fruchart JC et al (2004) The relationship between cholesteryl ester transfer protein levels and risk factor profile in patients with familial hypercholesterolemia. Atherosclerosis 173(2):261–267CrossRefGoogle Scholar
  12. Del Boccio G, Lapenna D, Porreca E, Pennelli A, Savini F, Feliciani P et al (1990) Aortic antioxidant defence mechanisms: time-related changes in cholesterol-fed rabbits. Atherosclerosis 81(2):127–135CrossRefGoogle Scholar
  13. Eiserich JP, Baldus S, Brennan ML, Ma W, Zhang C, Tousson A, Castro L, Lusis AJ, Nauseef WM, White CR, Freeman BA (2002) Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 296(5577):2391–2394CrossRefGoogle Scholar
  14. El-Awady MS, Suddek GM (2014) Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits. J Pharm Pharmacol 66(6):835–843PubMedGoogle Scholar
  15. El-Bassossy HM, Fahmy A, Badawy D (2011) Cinnamaldehyde protects from the hypertension associated with diabetes. Food Chem Toxicol 49(11):3007–3012CrossRefGoogle Scholar
  16. Ferri N, Corsini A, Sirtori CR, Ruscica M (2017) Present therapeutic role of cholesteryl ester transfer protein inhibitors. Pharmacol Res 128:29–41CrossRefGoogle Scholar
  17. Flores-Castillo C, Zamora-Perez JA, Carreon-Torres E, Arzola-Paniagua A, Aguilar-Salinas C, Lopez-Olmos V et al (2015) Atorvastatin and fenofibrate combination induces the predominance of the large HDL subclasses and increased apo AI fractional catabolic rates in New Zealand white rabbits with exogenous hypercholesterolemia. Fundam Clin Pharmacol 29(4):362–370CrossRefGoogle Scholar
  18. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502PubMedGoogle Scholar
  19. Friedman M, Kozukue N, Harden LA (2000) Cinnamaldehyde content in foods determined by gas chromatography-mass spectrometry. J Agric Food Chem 48(11):5702–5709CrossRefGoogle Scholar
  20. Frostegard J, Haegerstrand A, Gidlund M, Nilsson J (1991) Biologically modified LDL increases the adhesive properties of endothelial cells. Atherosclerosis 90(2–3):119–126CrossRefGoogle Scholar
  21. Guo X, Sun W, Huang L, Wu L, Hou Y, Qin L, Liu T (2017) Effect of cinnamaldehyde on glucose metabolism and vessel function. Med Sci Monit 23:3844–3853CrossRefGoogle Scholar
  22. Hosni AA, Abdel-Moneim AA, Abdel-Reheim ES, Mohamed SM, Helmy H (2017) Cinnamaldehyde potentially attenuates gestational hyperglycemia in rats through modulation of PPARgamma, proinflammatory cytokines and oxidative stress. Biomed Pharmacother 88:52–60CrossRefGoogle Scholar
  23. Howden R (2013) Nrf2 and cardiovascular defense. Oxidative Med Cell Longev 2013:104308Google Scholar
  24. Iwasaki Y, Tanabe M, Kobata K, Watanabe T (2008) TRPA1 agonists—allyl isothiocyanate and cinnamaldehyde—induce adrenaline secretion. Biosci Biotechnol Biochem 72(10):2608–2614CrossRefGoogle Scholar
  25. Jin S, Cho KH (2011) Water extracts of cinnamon and clove exhibits potent inhibition of protein glycation and anti-atherosclerotic activity in vitro and in vivo hypolipidemic activity in zebrafish. Food Chem Toxicol 49(7):1521–1529CrossRefGoogle Scholar
  26. Jorge PA, Ozaki MR, Metze K (1994) Effects of simvastatin and pravastatin on endothelium-dependent relaxation in hypercholesterolemic rabbits. Exp Toxicol Pathol 46(6):465–469CrossRefGoogle Scholar
  27. Jorge PA, Almeida EA, Ozaki MR, Jorge M, Carneiro A (2005) Effects of atorvastatin, fluvastatin, pravastatin, and simvastatin on endothelial function, lipid peroxidation, and aortic atherosclerosis in hypercholesterolemic rabbits. Arq Bras Cardiol 84(4):314–319CrossRefGoogle Scholar
  28. Kawabata F, Inoue N, Yazawa S, Kawada T, Inoue K, Fushiki T (2006) Effects of CH-19 sweet, a non-pungent cultivar of red pepper, in decreasing the body weight and suppressing body fat accumulation by sympathetic nerve activation in humans. Biosci Biotechnol Biochem 70(12):2824–2835CrossRefGoogle Scholar
  29. Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA (2003) Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 26(12):3215–3218CrossRefGoogle Scholar
  30. Khare P, Jagtap S, Jain Y, Baboota RK, Mangal P, Boparai RK, Bhutani KK, Sharma SS, Premkumar LS, Kondepudi KK, Chopra K, Bishnoi M (2016) Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice. Biofactors 42(2):201–211PubMedGoogle Scholar
  31. Kim SH, Hyun SH, Choung SY (2006) Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J Ethnopharmacol 104(1–2):119–123CrossRefGoogle Scholar
  32. Kim M, Kim S, Lim JH, Lee C, Choi HC, Woo CH (2012) Laminar flow activation of ERK5 protein in vascular endothelium leads to atheroprotective effect via NF-E2-related factor 2 (Nrf2) activation. J Biol Chem 287(48):40722–40731CrossRefGoogle Scholar
  33. Kundu JK, Surh YJ (2008) Inflammation: gearing the journey to cancer. Mutat Res 659(1–2):15–30CrossRefGoogle Scholar
  34. Lamb DJ, Tickner ML, Hourani SM, Ferns GA (2005) Dietary copper supplements modulate aortic superoxide dismutase, nitric oxide and atherosclerosis. Int J Exp Pathol 86(4):247–255CrossRefGoogle Scholar
  35. Li J, Liu T, Wang L, Guo X, Xu T, Wu L, Qin L, Sun W (2012) Antihyperglycemic and antihyperlipidemic action of cinnamaldehyde in C57BLKS/J db/db mice. J Tradit Chin Med 32(3):446–452CrossRefGoogle Scholar
  36. Li JE, Futawaka K, Yamamoto H, Kasahara M, Tagami T, Liu TH, Moriyama K (2015) Cinnamaldehyde contributes to insulin sensitivity by activating PPARdelta, PPARgamma, and RXR. Am J Chin Med 43(5):879–892CrossRefGoogle Scholar
  37. Liao BC, Hsieh CW, Liu YC, Tzeng TT, Sun YW, Wung BS (2008) Cinnamaldehyde inhibits the tumor necrosis factor-alpha-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-kappaB activation: effects upon IkappaB and Nrf2. Toxicol Appl Pharmacol 229(2):161–171CrossRefGoogle Scholar
  38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408CrossRefGoogle Scholar
  39. Lopes BP, Gaique TG, Souza LL, Paula GS, Kluck GE, Atella GC et al (2015) Cinnamon extract improves the body composition and attenuates lipogenic processes in the liver and adipose tissue of rats. Food Funct 6(10):3257–3265CrossRefGoogle Scholar
  40. Luo F, Guo Y, Ruan GY, Long JK, Zheng XL, Xia Q, Zhao SP, Peng DQ, Fang ZF, Li XP (2017) Combined use of metformin and atorvastatin attenuates atherosclerosis in rabbits fed a high-cholesterol diet. Sci Rep 7(1):2169–2178CrossRefGoogle Scholar
  41. Mantha SV, Kalra J, Prasad K (1996) Effects of probucol on hypercholesterolemia-induced changes in antioxidant enzymes. Life Sci 58(6):503–509CrossRefGoogle Scholar
  42. Meakin PJ, Chowdhry S, Sharma RS, Ashford FB, Walsh SV, McCrimmon RJ, Dinkova-Kostova AT, Dillon JF, Hayes JD, Ashford ML (2014) Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance. Mol Cell Biol 34(17):3305–3320CrossRefGoogle Scholar
  43. Messier EM, Day BJ, Bahmed K, Kleeberger SR, Tuder RM, Bowler RP, Chu HW, Mason RJ, Kosmider B (2013) N-acetylcysteine protects murine alveolar type II cells from cigarette smoke injury in a nuclear erythroid 2-related factor-2-independent manner. Am J Respir Cell Mol Biol 48(5):559–567CrossRefGoogle Scholar
  44. Michlig S, Merlini JM, Beaumont M, Ledda M, Tavenard A, Mukherjee R, Camacho S, le Coutre J (2016) Effects of TRP channel agonist ingestion on metabolism and autonomic nervous system in a randomized clinical trial of healthy subjects. Sci Rep 6:20795CrossRefGoogle Scholar
  45. Miller FJ Jr, Gutterman DD, Rios CD, Heistad DD, Davidson BL (1998) Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circ Res 82(12):1298–1305CrossRefGoogle Scholar
  46. Mollazadeh H, Hosseinzadeh H (2016) Cinnamon effects on metabolic syndrome: a review based on its mechanisms. Iran J Basic Med Sci 19(12):1258–1270PubMedPubMedCentralGoogle Scholar
  47. Mukherjee S, Coaxum SD, Maleque M, Das SK (2001) Effects of oxidized low density lipoprotein on nitric oxide synthetase and protein kinase C activities in bovine endothelial cells. Cell Mol Biol (Noisy-le-grand) 47(6):1051–1058Google Scholar
  48. Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7(2):27–31CrossRefGoogle Scholar
  49. Oh CJ, Park S, Kim JY, Kim HJ, Jeoung NH, Choi YK, Go Y, Park KG, Lee IK (2014) Dimethylfumarate attenuates restenosis after acute vascular injury by cell-specific and Nrf2-dependent mechanisms. Redox Biol 2:855–864CrossRefGoogle Scholar
  50. Okamoto H, Yonemori F, Wakitani K, Minowa T, Maeda K, Shinkai H (2000) A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature 406(6792):203–207CrossRefGoogle Scholar
  51. Paigen B, Holmes PA, Mitchell D, Albee D (1987) Comparison of atherosclerotic lesions and HDL-lipid levels in male, female, and testosterone-treated female mice from strains C57BL/6, BALB/c, and C3H. Atherosclerosis 64(2–3):215–221CrossRefGoogle Scholar
  52. Pape ME, Rehberg EF, Marotti KR, Melchior GW (1991) Molecular cloning, sequence, and expression of cynomolgus monkey cholesteryl ester transfer protein. Inverse correlation between hepatic cholesteryl ester transfer protein mRNA levels and plasma high density lipoprotein levels. Arterioscler Thromb 11(6):1759–1771CrossRefGoogle Scholar
  53. Pereira LM, Bezerra DG, Mandarim-de-Lacerda CA (2004) Aortic wall remodeling in rats with nitric oxide deficiency treated by enalapril or verapamil. Pathol Res Pract 200(3):211–217CrossRefGoogle Scholar
  54. Pignatelli P, Loffredo L, Martino F, Catasca E, Carnevale R, Zanoni C, del Ben M, Antonini R, Basili S, Violi F (2009) Myeloperoxidase overexpression in children with hypercholesterolemia. Atherosclerosis 205(1):239–243CrossRefGoogle Scholar
  55. Podrez EA, Schmitt D, Hoff HF, Hazen SL (1999) Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J Clin Invest 103(11):1547–1560CrossRefGoogle Scholar
  56. Prasad K, Kalra J (1993) Oxygen free radicals and hypercholesterolemic atherosclerosis: effect of vitamin E. Am Heart J 125(4):958–973CrossRefGoogle Scholar
  57. Prasad K, Mantha SV, Kalra J, Lee P (1997) Prevention of hypercholesterolemic atherosclerosis by garlic, an antixoidant. J Cardiovasc Pharmacol Ther 2(4):309–320CrossRefGoogle Scholar
  58. Preuss HG, Echard B, Polansky MM, Anderson R (2006) Whole cinnamon and aqueous extracts ameliorate sucrose-induced blood pressure elevations in spontaneously hypertensive rats. J Am Coll Nutr 25(2):144–150CrossRefGoogle Scholar
  59. Pritchard KA Jr, Groszek L, Smalley DM, Sessa WC, Wu M, Villalon P et al (1995) Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ Res 77(3):510–518CrossRefGoogle Scholar
  60. Quinet EM, Agellon LB, Kroon PA, Marcel YL, Lee YC, Whitlock ME, Tall AR (1990) Atherogenic diet increases cholesteryl ester transfer protein messenger RNA levels in rabbit liver. J Clin Invest 85(2):357–363CrossRefGoogle Scholar
  61. Quinet E, Tall A, Ramakrishnan R, Rudel L (1991) Plasma lipid transfer protein as a determinant of the atherogenicity of monkey plasma lipoproteins. J Clin Invest 87(5):1559–1566CrossRefGoogle Scholar
  62. Reddy AM, Seo JH, Ryu SY, Kim YS, Min KR, Kim Y (2004) Cinnamaldehyde and 2-methoxycinnamaldehyde as NF-kappaB inhibitors from Cinnamomum cassia. Planta Med 70(9):823–827CrossRefGoogle Scholar
  63. Rubbo H, Trostchansky A, Botti H, Batthyany C (2002) Interactions of nitric oxide and peroxynitrite with low-density lipoprotein. Biol Chem 383(3–4):547–552PubMedGoogle Scholar
  64. Salum E, Butlin M, Kals J, Zilmer M, Eha J, Avolio AP, Arend A, Aunapuu M, Kampus P (2014) Angiotensin II receptor blocker telmisartan attenuates aortic stiffening and remodelling in STZ-diabetic rats. Diabetol Metab Syndr 6:57CrossRefGoogle Scholar
  65. Schierwagen C, Bylund-Fellenius AC, Lundberg C (1990) Improved method for quantification of tissue PMN accumulation measured by myeloperoxidase activity. J Pharmacol Methods 23(3):179–186CrossRefGoogle Scholar
  66. Shehatou GS, Suddek GM (2016) Sulforaphane attenuates the development of atherosclerosis and improves endothelial dysfunction in hypercholesterolemic rabbits. Exp Biol Med (Maywood) 241(4):426–436CrossRefGoogle Scholar
  67. Shen Y, Fukushima M, Ito Y, Muraki E, Hosono T, Seki T et al (2010) Verification of the antidiabetic effects of cinnamon (Cinnamomum zeylanicum) using insulin-uncontrolled type 1 diabetic rats and cultured adipocytes. Biosci Biotechnol Biochem 74(12):2418–2425CrossRefGoogle Scholar
  68. Shen Y, Jia LN, Honma N, Hosono T, Ariga T, Seki T (2012) Beneficial effects of cinnamon on the metabolic syndrome, inflammation, and pain, and mechanisms underlying these effects—a review. J Tradit Complement Med 2(1):27–32CrossRefGoogle Scholar
  69. Shirwaikar A, Rajendran K, Dinesh Kumar C, Bodla R (2004) Antidiabetic activity of aqueous leaf extract of Annona squamosa in streptozotocin-nicotinamide type 2 diabetic rats. J Ethnopharmacol 91(1):171–175CrossRefGoogle Scholar
  70. Shull S, Heintz NH, Periasamy M, Manohar M, Janssen YM, Marsh JP, Mossman BT (1991) Differential regulation of antioxidant enzymes in response to oxidants. J Biol Chem 266(36):24398–24403PubMedGoogle Scholar
  71. Singh A, Khan SA, Choudhary R, Bodakhe SH (2016) Cinnamaldehyde attenuates cataractogenesis via restoration of hypertension and oxidative stress in fructose-fed hypertensive rats. Aust J Pharm 19(2):137–144Google Scholar
  72. Soehnlein O, Drechsler M, Hristov M, Weber C (2009) Functional alterations of myeloid cell subsets in hyperlipidaemia: relevance for atherosclerosis. J Cell Mol Med 13(11–12):4293–4303CrossRefGoogle Scholar
  73. Sozer V (2015) Ameliorative effect of statin therapy on oxidative damage in heart tissue of hypercholesterolemic rabbits. Fundam Clin Pharmacol 29(6):558–566CrossRefGoogle Scholar
  74. Steinberg D, Witztum JL (2010) Oxidized low-density lipoprotein and atherosclerosis. Arterioscler Thromb Vasc Biol 30(12):2311–2316CrossRefGoogle Scholar
  75. Subash-Babu P, Alshatwi AA, Ignacimuthu S (2014) Beneficial antioxidative and antiperoxidative effect of cinnamaldehyde protect streptozotocin-induced pancreatic beta-cells damage in Wistar rats. Biomol Ther (Seoul) 22(1):47–54CrossRefGoogle Scholar
  76. Sugano M, Makino N, Sawada S, Otsuka S, Watanabe M, Okamoto H, Kamada M, Mizushima A (1998) Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits. J Biol Chem 273(9):5033–5036CrossRefGoogle Scholar
  77. Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P (2001) Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol 158(3):879–891CrossRefGoogle Scholar
  78. Tall AR (1993) Plasma cholesteryl ester transfer protein. J Lipid Res 34(8):1255–1274PubMedGoogle Scholar
  79. Tanaka Y, Aleksunes LM, Yeager RL, Gyamfi MA, Esterly N, Guo GL, Klaassen CD (2008) NF-E2-related factor 2 inhibits lipid accumulation and oxidative stress in mice fed a high-fat diet. J Pharmacol Exp Ther 325(2):655–664CrossRefGoogle Scholar
  80. Wang F, Pu C, Zhou P, Wang P, Liang D, Wang Q, Hu Y, Li B, Hao X (2015) Cinnamaldehyde prevents endothelial dysfunction induced by high glucose by activating Nrf2. Cell Physiol Biochem 36(1):315–324CrossRefGoogle Scholar
  81. Wu CC, Hsieh CW, Lai PH, Lin JB, Liu YC, Wung BS (2006) Upregulation of endothelial heme oxygenase-1 expression through the activation of the JNK pathway by sublethal concentrations of acrolein. Toxicol Appl Pharmacol 214(3):244–252CrossRefGoogle Scholar
  82. Xue YL, Shi HX, Murad F, Bian K (2011) Vasodilatory effects of cinnamaldehyde and its mechanism of action in the rat aorta. Vasc Health Risk Manag 7:273–280PubMedPubMedCentralGoogle Scholar
  83. Yanaga A, Goto H, Nakagawa T, Hikiami H, Shibahara N, Shimada Y (2006) Cinnamaldehyde induces endothelium-dependent and -independent vasorelaxant action on isolated rat aorta. Biol Pharm Bull 29(12):2415–2418CrossRefGoogle Scholar
  84. Yang D, Liang XC, Shi Y, Sun Q, Liu D, Liu W, Zhang H (2015) Anti-oxidative and anti-inflammatory effects of cinnamaldehyde on protecting high glucose-induced damage in cultured dorsal root ganglion neurons of rats. Chin J Integr Med 22(1):19–27CrossRefGoogle Scholar
  85. Yeh M, Gharavi NM, Choi J, Hsieh X, Reed E, Mouillesseaux KP, Cole AL, Reddy ST, Berliner JA (2004) Oxidized phospholipids increase interleukin 8 (IL-8) synthesis by activation of the c-src/signal transducers and activators of transcription (STAT)3 pathway. J Biol Chem 279(29):30175–30181CrossRefGoogle Scholar
  86. Zhang R, Brennan ML, Fu X, Aviles RJ, Pearce GL, Penn MS, Topol EJ, Sprecher DL, Hazen SL (2001) Association between myeloperoxidase levels and risk of coronary artery disease. Jama 286(17):2136–2142CrossRefGoogle Scholar
  87. Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao TB, Zhong J, Yan ZC, Wang LJ, Zhao ZG, Zhu SJ, Schrader M, Thilo F, Zhu ZM, Tepel M (2007) Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res 100(7):1063–1070CrossRefGoogle Scholar
  88. Zhang Y, Li L, You J, Cao J, Fu X (2013) Effect of 7-difluoromethyl-5, 4′-dimethoxygenistein on aorta atherosclerosis in hyperlipidemia ApoE(−/−) mice induced by a cholesterol-rich diet. Drug Des Devel Ther 7:233–242CrossRefGoogle Scholar
  89. Zhang J, Niimi M, Yang D, Liang J, Xu J, Kimura T, Mathew AV, Guo Y, Fan Y, Zhu T, Song J, Ackermann R, Koike Y, Schwendeman A, Lai L, Pennathur S, Garcia-Barrio M, Fan J, Chen YE (2017) Deficiency of cholesteryl ester transfer protein protects against atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 37(6):1068–1075CrossRefGoogle Scholar
  90. Zhao J, Zhang X, Dong L, Wen Y, Zheng X, Zhang C, Chen R, Zhang Y, Li Y, He T, Zhu X, Li L (2015) Cinnamaldehyde inhibits inflammation and brain damage in a mouse model of permanent cerebral ischaemia. Br J Pharmacol 172(20):5009–5023CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmacology and Toxicology, Faculty of PharmacyMansoura UniversityMansouraEgypt
  2. 2.Urology and Nephrology Center, Faculty of MedicineMansoura UniversityMansouraEgypt

Personalised recommendations