Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 391, Issue 10, pp 1133–1145 | Cite as

Neuroprotective effect of vildagliptin against cerebral ischemia in rats

  • Salma A. El-Marasy
  • Rehab F. Abdel-Rahman
  • Reham M. Abd-Elsalam
Original Article
  • 138 Downloads

Abstract

Stroke is the leading cause of death worldwide. Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of anti-diabetic drugs for treatment of type-2 diabetes mellitus. The aim of this study is to evaluate the possible neuroprotective effect of a dipeptidyl peptidase-4 inhibitor, vildagliptin, independent of its anti-diabetic properties in non-diabetic rats subjected to cerebral ischemia. Anesthetized Wistar rats were subjected to either left middle cerebral artery occlusion (MCAO) or sham operation followed by reperfusion after 30 min of MCAO. The other three groups were orally administered vildagliptin at 3 dose levels (2.5, 5, 10 mg/kg) for 3 successive weeks before subjected to left focal cerebral ischemia/reperfusion and till the end of the study. Neurological deficit scores and motor activity were assessed 24 h following reperfusion. Forty-eight hours following reperfusion, rats were euthanized and their left brain hemispheres were harvested and used in biochemical, histopathological, and immunohistochemical investigations. Vildagliptin pretreatment improved neurological deficit score, locomotor activity, and motor coordination in MCAO rats. Moreover, vildagliptin reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), phosphotylinosital 3 kinase (PI3K), phosphoryated of protein kinase B (p-AKT), and mechanistic target of rapamycin (mTOR) brain contents in addition to reducing protein expression of caspase-3. Also, vildagliptin showed a dose-dependent attenuation in neuronal cell loss and histopathological alterations in MCAO rats. This study proves that vildagliptin exerted a neuroprotective effect in a dose-dependent manner as shown in the attenuation of the infarct area, neuronal cell loss, and histopathological damage in MCAO rats, which may be mediated by attenuating neuronal and motor deficits, its antioxidant property, activation of the PI3K/AKT/mTOR pathway, and its anti-apoptotic effect.

Keywords

Vildagliptin Dipeptidyl peptidase-4 inhibitor Cerebral ischemia Oxidative stress PI3K/AKT/mTOR pathway Caspase-3 Rats 

Notes

Author contributions

SA conceived and designed the research. SA and RF conducted pharmacological and biochemical analyses, and RM conducted and observed histopathological and immunohistochemical analyses. SA, RF, and RM wrote the manuscript. All authors read and approved the manuscript.

Compliance with ethical standards

All animal procedures were approved by the Ethics Committee of the National Research Centre, Egypt (registration number 17/097) and, Institutional Animal Care and Use Committee (IACUC), Cairo University (CU-II-F-9-18).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Abdelsalam RM, Safar MM (2015) Neuroprotective effects of vildagliptin in rat rotenone Parkinson’s disease model: role of RAGE-NFkappaB and Nrf2-antioxidant signaling pathways. J Neurochem 133:700–707CrossRefPubMedGoogle Scholar
  2. Ahren B, Schweizer A, Dejager S, Villhauer EB, Dunning BE, Foley JE (2011) Mechanisms of action of the dipeptidyl peptidase-4 inhibitor vildagliptin in humans. Diabetes Obes Metab 13:775–783CrossRefPubMedGoogle Scholar
  3. Alvarez-Buylla A, Ling CY, Kirn JR (1990) Cresyl violet: a red fluorescent Nissl stain. J Neurosci Methods 33:129–133CrossRefPubMedGoogle Scholar
  4. Bancroft JD, Gamble M (2008) Theory and practice of histological techniques. Elsevier Health Sciences, OxfordGoogle Scholar
  5. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472–476CrossRefPubMedGoogle Scholar
  6. Briyal S, Shah S, Gulati A (2014) Neuroprotective and anti-apoptotic effects of liraglutide in the rat brain following focal cerebral ischemia. Neuroscience 281:269–281CrossRefPubMedGoogle Scholar
  7. Bulaj G, Kortemme T, Goldenberg DP (1998) Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry 37:8965–8972CrossRefPubMedGoogle Scholar
  8. Bustamante A, Garcia-Berrocoso T, Rodriguez N, Llombart V, Ribo M, Molina C, Montaner J (2016) Ischemic stroke outcome: a review of the influence of post-stroke complications within the different scenarios of stroke care. Eur J Intern Med 29:9–21CrossRefPubMedGoogle Scholar
  9. Chen H, Qu Y, Tang B, Xiong T, Mu D (2012) Role of mammalian target of rapamycin in hypoxic or ischemic brain injury: potential neuroprotection and limitations. Rev Neurosci 23:279–287CrossRefPubMedGoogle Scholar
  10. Chinda K, Sanit J, Chattipakorn S, Chattipakorn N (2014) Dipeptidyl peptidase-4 inhibitor reduces infarct size and preserves cardiac function via mitochondrial protection in ischaemia-reperfusion rat heart. Diab Vasc Dis Res 11:75–83CrossRefPubMedGoogle Scholar
  11. Chong ZZ, Shang YC, Wang S, Maiese K (2012) A critical kinase cascade in neurological disorders: PI 3-K, Akt, and mTOR. Future Neurol 7:733–748CrossRefPubMedPubMedCentralGoogle Scholar
  12. Darsalia V, Larsson M, Lietzau G, Nathanson D, Nystrom T, Klein T, Patrone C (2016) Gliptin-mediated neuroprotection against stroke requires chronic pretreatment and is independent of glucagon-like peptide-1 receptor. Diabetes Obes Metab 18:537–541CrossRefPubMedGoogle Scholar
  13. Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371:1612–1623CrossRefPubMedGoogle Scholar
  14. Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705CrossRefPubMedGoogle Scholar
  15. El Batsh MM, El Batch MM, Shafik NM, Younos IH (2015) Favorable effects of vildagliptin on metabolic and cognitive dysfunctions in streptozotocin-induced diabetic rats. Eur J Pharmacol 769:297–305CrossRefPubMedGoogle Scholar
  16. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77CrossRefPubMedGoogle Scholar
  17. Gong G, Xiang L, Yuan L, Hu L, Wu W, Cai L, Yin L, Dong H (2014) Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced inflammation, oxidative stress, and apoptosis in rats. PLoS One 9:e89450CrossRefPubMedPubMedCentralGoogle Scholar
  18. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11:859–871CrossRefPubMedGoogle Scholar
  19. Huang H, Zhong R, Xia Z, Song J, Feng L (2014) Neuroprotective effects of rhynchophylline against ischemic brain injury via regulation of the Akt/mTOR and TLRs signaling pathways. Molecules 19:11196–11210CrossRefPubMedGoogle Scholar
  20. Huisamen B, Genis A, Marais E, Lochner A (2011) Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther 25:13–20CrossRefPubMedGoogle Scholar
  21. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808CrossRefPubMedPubMedCentralGoogle Scholar
  22. Itou M, Kawaguchi T, Taniguchi E, Sata M (2013) Dipeptidyl peptidase-4: a key player in chronic liver disease. World J Gastroenterol 19:2298–2306CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jain S, Sharma B (2015) Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia. Physiol Behav 152:182–193CrossRefPubMedGoogle Scholar
  24. Jin R, Liu L, Zhang S, Nanda A, Li G (2013) Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res 6:834–851CrossRefPubMedGoogle Scholar
  25. Kim M, Shin MS, Lee JM, Cho HS, Kim CJ, Kim YJ, Choi HR, Jeon JW (2014) Inhibitory effects of isoquinoline alkaloid Berberine on ischemia-induced apoptosis via activation of phosphoinositide 3-kinase/protein kinase B signaling pathway. Int Neurourol J 18:115–125CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kosaraju J, Gali CC, Khatwal RB, Dubala A, Chinni S, Holsinger RM, Madhunapantula VS, Muthureddy Nataraj SK, Basavan D (2013) Saxagliptin: a dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer's disease. Neuropharmacology 72:291–300CrossRefPubMedGoogle Scholar
  27. Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 7:97CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lee C, Moon S, Yoo K, Choi J, Park O, Hwang I, Sohn Y, Moon J, Cho J, Won M (2010) Long-term changes in neuronal degeneration and microglial activation in the hippocampal CA1 region after experimental transient cerebral ischemic damage. Brain Res Bull 1342:138–149CrossRefGoogle Scholar
  29. Li W, Yang Y, Hu Z, Ling S, Fang M (2015) Neuroprotective effects of DAHP and Triptolide in focal cerebral ischemia via apoptosis inhibition and PI3K/Akt/mTOR pathway activation. Front Neuroanat 9:48PubMedPubMedCentralGoogle Scholar
  30. Liang K, Ye Y, Wang Y, Zhang J, Li C (2014) Formononetin mediates neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/Bcl-2 ratio and upregulation PI3K/Akt signaling pathway. J Neurol Sci 344:100–104CrossRefPubMedGoogle Scholar
  31. Liu H, Liu X, Wei X, Chen L, Xiang Y, Yi F, Zhang X (2012) Losartan, an angiotensin II type 1 receptor blocker, ameliorates cerebral ischemia-reperfusion injury via PI3K/Akt-mediated eNOS phosphorylation. Brain Res Bull 89:65–70CrossRefPubMedGoogle Scholar
  32. Liu Y, Zhang L, Liang J (2015) Activation of the Nrf2 defense pathway contributes to neuroprotective effects of phloretin on oxidative stress injury after cerebral ischemia/reperfusion in rats. J Neurol Sci 351:88–92CrossRefPubMedGoogle Scholar
  33. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91CrossRefPubMedGoogle Scholar
  34. Maiese K, Chong ZZ, Shang YC (2008) OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol Med 14:219–227CrossRefPubMedPubMedCentralGoogle Scholar
  35. Maiese K, Chong ZZ, Shang YC, Wang S (2013) mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med 19:51–60CrossRefPubMedGoogle Scholar
  36. Mohamed RA, Agha AM, Abdel-Rahman AA, Nassar NN (2016) Role of adenosine A2A receptor in cerebral ischemia reperfusion injury: signaling to phosphorylated extracellular signal-regulated protein kinase (pERK1/2). Neuroscience 314:145–159CrossRefPubMedGoogle Scholar
  37. Morgan A, Galal MK, Ogaly HA, Ibrahim MA, Abd-Elsalam RM, Noshy P (2017) Tiron ameliorates oxidative stress and inflammation in titanium dioxide nanoparticles induced nephrotoxicity of male rats. Biomed Pharmacother 93:779–787CrossRefPubMedGoogle Scholar
  38. Pan L, Zhou Y, Li XF, Wan QJ, Yu LH (2017) Preventive treatment of astaxanthin provides neuroprotection through suppression of reactive oxygen species and activation of antioxidant defense pathway after stroke in rats. Brain Res Bull 130:211–220CrossRefPubMedGoogle Scholar
  39. Park OK, Choi JH, Park JH, Kim IH, Yan BC, Ahn JH, Kwon SH, Lee JC, Kim YS, Kim M, Kang IJ, Kim JD, Lee YL, Won MH (2012) Comparison of neuroprotective effects of five major lipophilic diterpenoids from Danshen extract against experimentally induced transient cerebral ischemic damage. Fitoterapia 83:1666–1674CrossRefPubMedGoogle Scholar
  40. Paulson OB (1971) Cerebral apoplexy (stroke): pathogenesis, pathophysiology and therapy as illustrated by regional blood flow measurements in the brain. Stroke 2:327–360CrossRefPubMedGoogle Scholar
  41. Pavic R, Tvrdeic A, Tot OK, Heffer-Lauc M (2007) Activity cage as a method to analyze functional recovery after sciatic nerve injury in mice. Somatosens Mot Res 24:213–219CrossRefPubMedGoogle Scholar
  42. Pipatpiboon N, Pintana H, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2013) DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption. Eur J Neurosci 37:839–849CrossRefPubMedGoogle Scholar
  43. Pongkan W, Pintana H, Jaiwongkam T, Kredphoo S, Sivasinprasasn S, Chattipakorn SC, Chattipakorn N (2016) Vildagliptin reduces cardiac ischemic-reperfusion injury in obese orchiectomized rats. J Endocrinol 231:81–95CrossRefPubMedGoogle Scholar
  44. Rohnert P, Schmidt W, Emmerlich P, Goihl A, Wrenger S, Bank U, Nordhoff K, Tager M, Ansorge S, Reinhold D, Striggow F (2012) Dipeptidyl peptidase IV, aminopeptidase N and DPIV/APN-like proteases in cerebral ischemia. J Neuroinflammation 9:44CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ruiz-Larrea MB, Leal AM, Liza M, Lacort M, de Groot H (1994) Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids 59:383–388CrossRefPubMedGoogle Scholar
  46. Sa-Nguanmoo P, Tanajak P, Kerdphoo S, Jaiwongkam T, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2017) SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol 333:43–50CrossRefPubMedGoogle Scholar
  47. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976CrossRefPubMedPubMedCentralGoogle Scholar
  48. Shen M, Wang S, Wen X, Han XR, YJ W, XM Z, MH Z, DM W, YL Z (2017) Dexmedetomidine exerts neuroprotective effect via the activation of the PI3K/Akt/mTOR signaling pathway in rats with traumatic brain injury. Biomed Pharmacother 95:885–893CrossRefPubMedGoogle Scholar
  49. Sivasinprasasn S, Tanajak P, Pongkan W, Pratchayasakul W, Chattipakorn SC, Chattipakorn N (2017) DPP-4 inhibitor and estrogen share similar efficacy against cardiac ischemic-reperfusion injury in obese-insulin resistant and estrogen-deprived female rats. Sci Rep 7:44306CrossRefPubMedPubMedCentralGoogle Scholar
  50. Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J (2017) Molecular neurobiology of mTOR. Neuroscience 341:112–153CrossRefPubMedGoogle Scholar
  51. Tsuboi K, Mizukami H, Inaba W, Baba M, Yagihashi S (2016) The dipeptidyl peptidase IV inhibitor vildagliptin suppresses development of neuropathy in diabetic rodents: effects on peripheral sensory nerve function, structure and molecular changes. J Neurochem 136:859–870CrossRefPubMedGoogle Scholar
  52. Vijitruth R, Liu M, Choi D, Nguyen X, Hunter R, Bing G (2006) Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J Neuroinflammation 3:6CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wang S, Xu H, Xin Y, Li M, Fu W, Wang Y, Lu Z, Yu X, Sui D (2016) Neuroprotective effects of Kaempferide-7-O-(4″-O-acetylrhamnosyl)-3-O-rutinoside on cerebral ischemia-reperfusion injury in rats. Eur J Pharmacol 788:335–342CrossRefPubMedGoogle Scholar
  54. Wu J, Wang R, Yang D, Tang W, Chen Z, Sun Q, Liu L, Zang R (2018) Hydrogen postconditioning promotes survival of rat retinal ganglion cells against ischemia/reperfusion injury through the PI3K/Akt pathway. Biochem Biophys Res Commun 495:2462–2468CrossRefPubMedGoogle Scholar
  55. Yang G, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P, Epstein CJ, Kamii H (1994) Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25:165–170CrossRefPubMedGoogle Scholar
  56. Yassin N, El-Shenawy S, Mahdy KA, Gouda N, Marrie A, Farrag A, Ibrahim BM (2013) Effect of Boswellia serrata on Alzheimer’s disease induced in rats. J Arab Soc Med Res 8:1–11Google Scholar
  57. Ye Y, Li J, Cao X, Chen Y, Ye C, Chen K (2016) Protective effect of n-butyl alcohol extracts from Rhizoma Pinelliae Pedatisectae against cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol 188:259–265CrossRefPubMedGoogle Scholar
  58. Yoshino Y, Ishisaka M, Tsujii S, Shimazawa M, Hara H (2015) Glucagon-like peptide-1 protects the murine hippocampus against stressors via Akt and ERK1/2 signaling. Biochem Biophys Res Commun 458:274–279CrossRefPubMedGoogle Scholar
  59. Yu Z, Cai M, Xiang J, Zhang Z, Zhang J, Song X, Zhang W, Bao J, Li W, Cai D (2016) PI3K/Akt pathway contributes to neuroprotective effect of Tongxinluo against focal cerebral ischemia and reperfusion injury in rats. J Ethnopharmacol 181:8–19CrossRefPubMedGoogle Scholar
  60. Zhao Q, Cheng X, Wang X, Wang J, Zhu Y, Ma X (2016) Neuroprotective effect and mechanism of Mu-Xiang-You-Fang on cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol 192:140–147CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PharmacologyNational Research CentreGizaEgypt
  2. 2.Department of Pathology, Faculty of Veterinary medicineCairo UniversityGizaEgypt

Personalised recommendations