Modulation of sodium channels as pharmacological tool for pain therapy—highlights and gaps

Review
  • 141 Downloads

Abstract

Voltage-gated sodium channels are crucially involved in the transduction and transmission of nociceptive signals and pathological pain states. In the past decades, a lot of effort has been spent examining and characterizing biophysical properties of the different sodium channels and their role in signaling pathways. Several gains of function mutations of the sodium channels Nav1.7, Nav1.8, and Nav1.9 are associated with pain disorders. Due to their critical role in nociceptive pathways voltage-gated sodium channels are regarded interesting targets for pharmacological pain treatment. However we still need to fill the gap that exists in the translation of efficacy in preclinical in vitro experiments and in models of pain into the clinic. This review summarizes biological and electrophysiological properties of voltage-gated sodium channels and aims to discuss limitations and promising pharmacological strategies in sodium channel research in the context of pain therapy.

Keywords

Voltage-gated sodium channel Analgesia Pain signaling pathways Translational research 

References

  1. Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2(6):541–548PubMedCrossRefGoogle Scholar
  2. Armstrong CM (2006) Na channel inactivation from open and closed states. Proc Natl Acad Sci U S A 103:17991–17996PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bagal SK, Marron BE, Owen RM, Storer RI, Swain NA (2015) Voltage gated sodium channels as drug discovery targets. Channels (Austin) 9(6):360–366CrossRefGoogle Scholar
  4. Bang S, Yoo J, Gong X, Liu D, Han Q, Luo X, Chang W, Chen G, Im ST, Kim YH, Strong JA, Zhang MZ, Zhang JM, Lee SY, Ji RR (2018) Differential inhibition of Nav1.7 and neuropathic pain by hybridoma-produced and recombinant monoclonal antibodies that target Nav1.7: differential activities of Nav1.7-targeting monoclonal antibodies. Neurosci Bull 34(1):22–41PubMedCrossRefGoogle Scholar
  5. Bhave G, Gereau RW 4th (2004) Posttranslational mechanisms of peripheral sensitization. J Neurobiol 61(1):88–106PubMedCrossRefGoogle Scholar
  6. Binshtok AM, Gerner P, Oh SB, Puopolo M, Suzuki S, Roberson DP, Herbert T, Wang CF, Kim D, Chung G, Mitani AA, Wang GK, Bean BP, Woolf CJ (2009) Coapplication of lidocaine and the permanently charged sodium channel blocker QX-314 produces a long-lasting nociceptive blockade in rodents. Anesthesiology 111(1):127–137PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bosmans F, Puopolo M, Martin-Eauclaire MF, Bean BP, Swartz KJ (2011) Functional properties and toxin pharmacology of a dorsal root ganglion sodium channel viewed through its voltage sensors. J Gen Physiol 138(1):59–72PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brackenbury WJ, Isom LL (2008) Voltage-gated Na+ channels: potential for beta subunits as therapeutic targets. Expert Opin Ther Targets 12(9):1191–1203PubMedPubMedCentralCrossRefGoogle Scholar
  9. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D (2006) Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain 10(4):287–333PubMedCrossRefGoogle Scholar
  10. Bulmer DC, Grundy D (2011) Achieving translation in models of visceral pain. Curr Opin Pharmacol 11(6):575–581PubMedCrossRefGoogle Scholar
  11. Camm AJ (2017) Hopes and disappointments with antiarrhythmic drugs. Int J Cardiol 237:71–74PubMedCrossRefGoogle Scholar
  12. Castle N, Printzenhoff D, Zellmer S, Antonio B, Wickenden A, Silvia C (2009) Sodium channel inhibitor drug discovery using automated high throughput electrophysiology platforms. Comb Chem High Throughput Screen 12(1):107–122PubMedCrossRefGoogle Scholar
  13. Chambers SM, Qi Y, Mica Y, Lee G, Zhang XJ, Niu L, Bilsland J, Cao L, Stevens E, Whiting P, Shi SH, Studer L (2012) Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol 30(7):715–720PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chang W, Berta T, Kim YH, Lee S, Lee SY, Ji RR (2017) Expression and role of voltage-gated sodium channels in human dorsal root ganglion neurons with special focus on Nav1.7, species differences, and regulation by paclitaxel. Neurosci Bull 34(1):4–12PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chen HP, Zhou W, Kang LM, Yan H, Zhang L, Xu BH, Cai WH (2014) Intrathecal miR-96 inhibits Nav1.3 expression and alleviates neuropathic pain in rat following chronic construction injury. Neurochem Res 39(1):76–83PubMedCrossRefGoogle Scholar
  16. Choi JS, Boralevi F, Brissaud O, Sánchez-Martín J, Te Morsche RH, Dib-Hajj SD, Drenth JP, Waxman SG (2011) Paroxysmal extreme pain disorder: a molecular lesion of peripheral neurons. Nat Rev Neurol 7(1):51–55PubMedCrossRefGoogle Scholar
  17. Cohen IS, Strichartz GR (1977) On the voltage-dependent action of tetrodotoxin. Biophys J 17(3):275–279PubMedPubMedCentralCrossRefGoogle Scholar
  18. Coste B, Osorio N, Padilla F, Crest M, Delmas P (2004) Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Mol Cell Neurosci 26:123–134PubMedCrossRefGoogle Scholar
  19. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y, al-Gazali L, Hamamy H, Valente EM, Gorman S, Williams R, McHale DP, Wood JN, Gribble FM, Woods CG (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898PubMedCrossRefGoogle Scholar
  20. Craig AD, Bushnell MC, Zhang ET, Blomqvist A (2002) Association of spinothalamic lamina I neurons and their ascending axons with calbindin-immunoreactivity in monkey and human. Pain 97:105–115PubMedCrossRefGoogle Scholar
  21. Cummins TR, Howe JR, Waxman SG (1998) Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J Neurosci 18(23):9607–9619PubMedCrossRefGoogle Scholar
  22. Cummins TR, Dib-Hajj SD, Waxman SG (2004) Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J Neurosci 24(38):8232–8236PubMedCrossRefGoogle Scholar
  23. Dib-Hajj SD, Tyrrell L, Black JA, Waxman SG (1998) NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci U S A 95(15):8963–8968PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dib-Hajj SD, Black JA, Cummins TR, Waxman SG (2002) NaN/Nav1.9: a sodium channel with unique properties. Trends Neurosci 25:253–259PubMedCrossRefGoogle Scholar
  25. Dib-Hajj SD, Black JA, Waxman SG (2015) NaV1.9: a sodium channel linked to human pain. Nat Rev Neurosci 16(9):511–519PubMedCrossRefGoogle Scholar
  26. Emery EC, Luiz AP, Wood JN (2016) Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opin Ther Targets 20:975–983PubMedPubMedCentralCrossRefGoogle Scholar
  27. Enomoto A, Seki S, Tanaka S, Ishihama K, Yamanishi T, Kogo M, Hamada S (2018) Development of resurgent and persistent sodium currents in mesencephalic trigeminal neurons. J Neurosci Res 96(2):305–312PubMedCrossRefGoogle Scholar
  28. Foadi N, Berger C, Pilawski I, Stoetzer C, Karst M, Haeseler G, Wegner F, Leffler A, Ahrens J (2014) Inhibition of voltage-gated Na+ channels by the synthetic cannabinoid ajulemic acid. Anesth Analg 118(6):1238–1245PubMedCrossRefGoogle Scholar
  29. Goldberg YP, MacFarlane J, MacDonald ML, Thompson J, Dube MP, Mattice M, Fraser R, Young C, Hossain S, Pape T, Payne B, Radomski C, Donaldson G, Ives E, Cox J, Younghusband HB, Green R, Duff A, Boltshauser E, Grinspan GA, Dimon JH, Sibley BG, Andria G, Toscano E, Kerdraon J, Bowsher D, Pimstone SN, Samuels ME, Sherrington R, Hayden MR (2007) Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 71(4):311–319PubMedCrossRefGoogle Scholar
  30. Goral RO, Leipold E, Nematian-Ardestani E, Heinemann SH (2015) Heterologous expression of NaV1.9 chimeras in various cell systems. Pflugers Arch 467(12):2423–2435PubMedCrossRefGoogle Scholar
  31. Haeseler G, Piepenbrink A, Bufler J, Dengler R, Aronson JK, Piepenbrock S, Leuwer M (2001) Structural requirements for voltage-dependent block of muscle sodium channels by phenol derivatives. Br J Pharmacol 132(8):1916–1924PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hains BC, Klein JP, Saab CY, Craner MJ, Black JA, Waxman SG (2003) Upregulation of sodium channel NaV1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci 26:8881–8892Google Scholar
  33. Han C, Estacion M, Huang J (2015) Human Nav1.8 enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons. J Neurophysiol 113:3172–3185PubMedPubMedCentralCrossRefGoogle Scholar
  34. Heijman J, Ghezelbash S, Dobrev D (2017) Investigational antiarrhythmic agents: promising drugs in early clinical development. Expert Opin Investig Drugs 26(8):897–907PubMedCrossRefGoogle Scholar
  35. Herzog RI, Cummins TR, Waxman SG (2001) Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol 86(3):1351–1364PubMedCrossRefGoogle Scholar
  36. Huang J, Han C, Estacion M, Vasylyev D, Hoeijmakers JG, Gerrits MM, Tyrrell L, Lauria G, Faber CG, Dib-Hajj SD, Merkies IS, Waxman SG, PROPANE Study Group (2014) Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain 137(6):1627–1642PubMedCrossRefGoogle Scholar
  37. Isensee J, Krahé L, Moeller K, Pereira V, Sexton JE, Sun X, Emery E, Wood JN, Hucho T (2017) Synergistic regulation of serotonin and opioid signaling contributes to pain insensitivity in Nav1.7 knockout mice. Sci Signal 10(461):eaah4874PubMedCrossRefGoogle Scholar
  38. Jarecki BW, Piekarz AD, Jackson JO 2nd, Cummins TR (2010) Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents. J Clin Invest 120:369–378PubMedCrossRefGoogle Scholar
  39. Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF, Kort M, Carroll W, Marron B, Atkinson R, Thomas J, Liu D, Krambis M, Liu Y, McGaraughty S, Chu K, Roeloffs R, Zhong C, Mikusa JP, Hernandez G, Gauvin D, Wade C, Zhu C, Pai M, Scanio M, Shi L, Drizin I, Gregg R, Matulenko M, Hakeem A, Gross M, Johnson M, Marsh K, Wagoner PK, Sullivan JP, Faltynek CR, Krafte DS (2007) A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci U S A 104(20):8520–8525PubMedPubMedCentralCrossRefGoogle Scholar
  40. Jo S, Bean BP (2017) Lacosamide inhibition of Nav1.7 voltage-gated sodium channels: slow binding to fast-inactivated states. Mol Pharmacol 91(4):277–286PubMedPubMedCentralCrossRefGoogle Scholar
  41. Khan MA, Gerner P, Kuo Wang G (2002) Amitriptyline for prolonged cutaneous analgesia in the rat. Anesthesiology 96:109–116PubMedCrossRefGoogle Scholar
  42. King AM, Yang XF, Wang Y, Dustrude ET, Barbosa C, Due MR, Piekarz AD, Wilson SM, White FA, Salomé C, Cummins TR, Khanna R, Kohn H (2012) Identification of the benzyloxyphenyl pharmacophore: a structural unit that promotes sodium channel slow inactivation. ACS Chem Neurosci 3(12):1037–1049PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kiss T (2008) Persistent Na-channels: origin and function. A review. Acta Biol Hung 59(Suppl):1–12PubMedCrossRefGoogle Scholar
  44. Krishnan AV, Lin CS, Park SB, Kiernan MC (2009) Axonal ion channels from bench to bedside: a translational neuroscience perspective. Prog Neurobiol 89(3):288–313PubMedCrossRefGoogle Scholar
  45. Laedermann CJ, Abriel H, Decosterd I (2015) Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes. Front Pharmacol 6:263PubMedPubMedCentralCrossRefGoogle Scholar
  46. Law R, Levin M (2015) Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells. Theor Biol Med Model 12:22PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lee JH, Park CK, Chen G, Han Q, Xie RG, Liu T, Ji RR, Lee SY (2014) A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell 157(6):1393–1404PubMedPubMedCentralCrossRefGoogle Scholar
  48. Leffler A, Herzog RI, Dib-Hajj SD, Waxman SG, Cummins TR (2005) Pharmacological properties of neuronal TTX-resistant sodium channels and the role of a critical serine pore residue. Pflugers Arch 451(3):454–463PubMedCrossRefGoogle Scholar
  49. Lenkey N, Karoly R, Lukacs P, Vizi ES, Sunesen M, Fodor L, Mike A (2010) Classification of drugs based on properties of sodium channel inhibition: a comparative automated patch-clamp study. PLoS One 5(12):e15568PubMedPubMedCentralCrossRefGoogle Scholar
  50. Leo M, Argalski S, Schäfers M, Hagenacker T (2015) Modulation of voltage-gated sodium channels by activation of tumor necrosis factor receptor-1 and receptor-2 in small DRG neurons of rats. Mediat Inflamm 2015:124942CrossRefGoogle Scholar
  51. Lewis AH, Raman IM (2014) Resurgent current of voltage-gated Na(+) channels. J Physiol 592(22):4825–4838PubMedPubMedCentralCrossRefGoogle Scholar
  52. Liebovitch LS, Todorov AT (1996) Using fractals and nonlinear dynamics to determine the physical properties of ion channel proteins. Crit Rev Neurobiol 10(2):169–187PubMedCrossRefGoogle Scholar
  53. Lötsch J, Oertel BG, Ultsch A (2014) Human models of pain for the prediction of clinical analgesia. Pain 155(10):2014–2021PubMedCrossRefGoogle Scholar
  54. Luongo L, Maione S, Di Marzo V (2014) Endocannabinoids and neuropathic pain: focus on neuron-glia and endocannabinoid-neurotrophin interactions. Eur J Neurosci 39(3):401–408PubMedCrossRefGoogle Scholar
  55. Mika J, Zychowska M, Makuch W, Rojewska E, Przewlocka B (2013) Neuronal and immunological basis of action of antidepressants in chronic pain - clinical and experimental studies. Pharmacol Rep 65(6):1611–1621PubMedCrossRefGoogle Scholar
  56. Minett MS, Pereira V, Sikandar S, Matsuyama A, Lolignier S, Kanellopoulos AH, Mancini F, Iannetti GD, Bogdanov YD, Santana-Varela S, Millet Q, Baskozos G, MacAllister R, Cox JJ, Zhao J, Wood JN (2015) Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7. Nat Commun 6:8967PubMedPubMedCentralCrossRefGoogle Scholar
  57. Moghadamnia AA, Partovi M, Mohammadianfar I, Madani Z, Zabihi E, Hamidi MR, Baradaran M (2009) Evaluation of the effect of locally administered amitriptyline gel as adjunct to local anesthetics in irreversible pulpitis pain. Indian J Dent Res 20(1):3–6PubMedCrossRefGoogle Scholar
  58. Moore RA, Derry S, Aldington D, Cole P, Wiffen PJ (2015) Amitriptyline for neuropathic pain in adults. Cochrane Database Syst Rev 7:CD008242Google Scholar
  59. Namadurai S, Balasuriya D, Rajappa R, Wiemhöfer M, Stott K, Klingauf J, Edwardson JM, Chirgadze DY, Jackson AP (2014) Crystal structure and molecular imaging of the Nav channel β3 subunit indicates a trimeric assembly. J Biol Chem 289(15):10797–10811PubMedPubMedCentralCrossRefGoogle Scholar
  60. Nassar MA, Stirling LC, Forlani G, Baker MD, Matthews EA, Dickenson AH, Wood JN (2004) Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci U S A 101(34):12706–12711PubMedPubMedCentralCrossRefGoogle Scholar
  61. Nassar MA, Baker MD, Levato A, Ingram R, Mallucci G, McMahon SB, Wood JN (2006) Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol Pain 2:33PubMedPubMedCentralCrossRefGoogle Scholar
  62. Nau C, Wang GK (2004) Interactions of local anesthetics with voltage-gated Na+ channels. J Membr Biol 201(1):1–8PubMedCrossRefGoogle Scholar
  63. Pal K, Gangopadhyay G (2015) Probing kinetic drug binding mechanism in voltage-gated sodium ion channel: open state versus inactive state blockers. Channels (Austin) 9(5):307–316CrossRefGoogle Scholar
  64. Patrick Harty T, Waxman SG (2007) Inactivation properties of sodium channel Nav1.8 maintain action potential amplitude in small DRG neurons in the context of depolarization. Mol Pain 3:12PubMedPubMedCentralGoogle Scholar
  65. Qin F (2014) Principles of single-channel kinetic analysis. Methods Mol Biol 1183:371–399PubMedCrossRefGoogle Scholar
  66. Rice AS, Cimino-Brown D, Eisenach JC, Kontinen VK, Lacroix-Fralish ML, Machin I, Preclinical Pain Consortium, Mogil JS, Stöhr T (2008) Animal models and the prediction of efficacy in clinical trials of analgesic drugs: a critical appraisal and call for uniform reporting standards. Pain 139(2):243–247PubMedCrossRefGoogle Scholar
  67. Rush AM, Waxman SG (2004) PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Res 1023(2):264–271PubMedCrossRefGoogle Scholar
  68. Sakai A, Saitow F, Miyake N, Miyake K, Shimada T, Suzuki H (2013) miR-7a alleviates the maintenance of neuropathic pain through regulation of neuronal excitability. Brain 136(Pt 9):2738–2750PubMedCrossRefGoogle Scholar
  69. Scheuer T (2011) Regulation of sodium channel activity by phosphorylation. Semin Cell Dev Biol 22(2):160–165PubMedCrossRefGoogle Scholar
  70. Shields SD, Ahn HS, Yang Y, Han C, Seal RP, Wood JN, Waxman SG, Dib-Hajj SD (2012) Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain 153:2017–2030PubMedCrossRefGoogle Scholar
  71. Silva J (2014) Slow inactivation of Na(+) channels. Handb Exp Pharmacol 221:33–49PubMedCrossRefGoogle Scholar
  72. Stueber T, Eberhardt MJ, Hadamitzky C, Jangra A, Schenk S, Dick F, Stoetzer C, Kistner K, Reeh PW, Binshtok AM, Leffler A (2016) Quaternary lidocaine derivative QX-314 activates and permeates human TRPV1 and TRPA1 to produce inhibition of sodium channels and cytotoxicity. Anesthesiology 124(5):1153–1165PubMedCrossRefGoogle Scholar
  73. Sula A, Booker J, Ng LC, Naylor CE, DeCaen PG, Wallace BA (2017) The complete structure of an activated open sodium channel. Nat Commun 8:14205PubMedPubMedCentralCrossRefGoogle Scholar
  74. Tan ZY, Piekarz AD, Priest BT, Knopp KL, Krajewski JL, McDermott JS, Nisenbaum ES, Cummins TR (2014) Tetrodotoxin-resistant sodium channels in sensory neurons generate slow resurgent currents that are enhanced by inflammatory mediators. J Neurosci 34(21):7190–7197PubMedPubMedCentralCrossRefGoogle Scholar
  75. Theile JW, Cummins TR (2011) Inhibition of Navβ4 peptide-mediated resurgent sodium currents in Nav1.7 channels by carbamazepine, riluzole, and anandamide. Mol Pharmacol 80(4):724–734PubMedPubMedCentralCrossRefGoogle Scholar
  76. Thompson DF, Brooks KG (2015) Systematic review of topical amitriptyline for the treatment of neuropathic pain. J Clin Pharm Ther 40(5):496–503CrossRefGoogle Scholar
  77. Vanoye CG, Kunic JD, Ehring GR, George AL Jr (2013) Mechanism of sodium channel NaV1.9 potentiation by G-protein signaling. J Gen Physiol 141(2):193–202PubMedPubMedCentralCrossRefGoogle Scholar
  78. Verkerk AO, Remme CA, Schumacher CA, Scicluna BP, Wolswinkel R, De Jonge B, Bezzina CR, Veldkamp MW (2012) Functional NaV1.8 channels in intracardiac neurons: the link between SCN10A and cardiac electrophysiology. Circ Res 111:333–343PubMedCrossRefGoogle Scholar
  79. Wawrzkiewicz A, Pawelek K, Borys P, Dworakowska B, Grzywna ZJ (2012) On the simple random-walk models of ion-channel gate dynamics reflecting long-term memory. Eur Biophys J 41(6):505–526PubMedPubMedCentralCrossRefGoogle Scholar
  80. Waxman SG (2007) Nav1.7, its mutations, and the syndromes that they cause. Neurology 69(6):505–507PubMedCrossRefGoogle Scholar
  81. Waxman SG, Merkies ISJ, Gerrits MM, Dib-Hajj SD, Lauria G, Cox JJ, Wood JN, Woods CG, Drenth JP, Faber CG (2014) Sodium channel genes in pain-related disorders: phenotype–genotype associations and recommendations for clinical use. Lancet Neurol 13:1152–1160PubMedCrossRefGoogle Scholar
  82. Weiss J, Pyrski M, Jacobi E, Bufe B, Willnecker V, Schick B, Zizzari P, Gossage SJ, Greer CA, Leinders-Zufall T, Woods CG, Wood JN, Zufall F (2011) Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472(7342):186–190PubMedPubMedCentralCrossRefGoogle Scholar
  83. Wheeler DW, Lee MC, Harrison EK, Menon DK, Woods CG (2015) Case report: neuropathic pain in a patient with congenital insensitivity to pain [version 2; referees: 2 approved]. F1000Res 3(135):135PubMedCentralCrossRefGoogle Scholar
  84. Wood JN, Boorman JP, Okuse K, Baker MD (2004) Voltage-gated sodium channels and pain pathways. J Neurobiol 61(1):55–71PubMedCrossRefGoogle Scholar
  85. Woolf CJ, Safieh-Garabedian B, Ma QP, Crilly P, Winter J (1994) Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience 62(2):327–331PubMedCrossRefGoogle Scholar
  86. Yu FH, Catterall WA (2003) Overview of the voltage-gated sodium channel family. Genome Biol 4(3):207PubMedPubMedCentralCrossRefGoogle Scholar
  87. Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, Nau C, Wood JN, Reeh PW (2007) Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447(7146):855–858PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Clinic for Anaesthesia and Critical Care MedicineHannover Medical SchoolHannoverGermany

Personalised recommendations