Advertisement

Topical application of phenolic compounds suppresses Propionibacterium acnes-induced inflammatory responses in mice with ear edema

  • Zípora Morgana Quinteiro dos Santos
  • Marlene Quinteiro dos Santos
  • Vilmair Zancanaro
  • Emyr Hiago Bellaver
  • Geisson Marcos Nardi
  • Jane Mary Lafayet Gelinski
  • Claudriana LocatelliEmail author
Original Article
  • 21 Downloads

Abstract

Acne vulgaris (AV), a severe chronic inflammatory dermatosis, commonly treated with systemic or topical antibiotics that exacerbate bacterial resistance and pose adverse side effects, new approaches for suppressing or reducing Propionibacterium acnes-induced inflammatory responses and thereby treating AV remain necessary. In response, the goal of our study was to investigate the therapeutic potential of phenolic compounds in the in vivo inflammatory process induced by P. acnes. Mice were intradermally challenged with a suspension containing 1.0 × 107 CFU/mL of P. acnes per ear, after which groups of mice were variously treated with 20 μg of resveratrol, quercetin, gallic acid, or benzoyl peroxide. Mice ears were measured (mm) before each inducement and treatment. At the end of the experiment, activity catalase and superoxide dismutase, levels of myeloperoxidase (MPO), interleukin-1 beta (IL-1β), tumor necrosis factor alpha, thiobarbituric acid reactive substances (TBARS), and glutathione were evaluated. Mice treated with resveratrol, quercetin, or gallic acid produced a 40%, 40%, and 30% reduction of the edema, respectively, while mice treated with resveratrol or gallic acid produced a 50 and 45% reduction in IL-1β, also respectively, and a 35% reduction in MPO. Compared to mice in the control group (210 ± 21 μmol/mg protein) and ones treated with benzoyl peroxide (339.7 ± 21.3 μmol/mg protein), mice treated with resveratrol, quercetin, or gallic acid showed low levels of TBARS (71 ± 12 μmol/mg, 62 ± 10 μmol/mg, and 104 ± 15 μmol/mg protein, respectively). Such results suggest that phenolic compounds are a good alternative for the development of cosmetics that can be used to treat AV.

Graphical abstract

Keywords

Acne Skin Inflammation Oxidative stress 

Notes

Acknowledgements

The authors would like to thank the Department of Science and Biotechnology at the Universidade do Oeste de Santa Catarina, Videira, SC, Brazil.

Author contributions

ZMQS, MQS, VZ, EHB, GMN, and JMLG contributed to data acquisition and analysis and conducted the research. ZMQS, GMN, and CL contributed to the study design, data interpretation, and writing of the manuscript. All the authors provided critical review of the draft manuscript and approved submission of the final manuscript for publication.

Funding information

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Su’perior Brazil (CAPES)—Finance code 001.

Compliance with ethical standards

All the procedure described herein were approved by animal ethics committee Universidade do Oeste de Santa Catarina’s (UNOESC) by law number 26/2015.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adomako-Bonsu AG, Chan SLF, Pratten M, Fry JR (2017) Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: importance of physico-chemical characteristics. Toxicol in Vitro 40:248–255.  https://doi.org/10.1016/j.tiv.2017.01.016 Google Scholar
  2. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6727660 Google Scholar
  3. Al-Shobaili H, Hassanein KM, Mostafa M, ASAl D (2015) Evaluation of the HerpeSelect express rapid test in the detection of herpes simplex virus type 2 antibodies in patients with genital ulcer disease. J Clin Lab Anal 29(1):43–46.  https://doi.org/10.1002/jcla.21725 Google Scholar
  4. Arican O, Kurutas EB, Sasmaz S (2005) Oxidative stress in patients with acne vulgaris. Mediat Inflamm 2005(6):380–384.  https://doi.org/10.1155/MI.2005.380 Google Scholar
  5. Bird RP, Draper HH (1984) Comparative studies on different methods of malonaldehyde determination. Methods Enzymol 105:299–305 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6727668 Google Scholar
  6. Bralley EE, Greenspan P, Hargrove JL, Wicker L, Hartle DK (2008) Topical anti-inflammatory activity of Polygonum cuspidatum extract in the TPA model of mouse ear inflammation. J Inflamm 5(1):1–7.  https://doi.org/10.1186/1476-9255-5-l Google Scholar
  7. Brdanin S, Bogdanovic N, Kolundzic M, Milenkovic M, Golic N, Kojic M, Kundakovic T (2015) Antimicrobial activity of oregano (Origanum vulgare L.): and basil (Ocimum basilicum L.): extracts. Adv Technol 4(1):5–10.  https://doi.org/10.5937/savteh1502005B Google Scholar
  8. Brennan K, Zheng J (2011) Interleukin 8. In: xPharm: the comprehensive pharmacology reference. Elsevier Inc., New York, pp 1–4Google Scholar
  9. Busquets S, Ametller E, Fuster G, Olivan M, Raab V, Argilés JM, López-Soriano FJ (2007) Resveratrol, a natural diphenol, reduces metastatic growth in an experimental cancer model. Cancer Lett 245(1–2):144–148.  https://doi.org/10.1016/j.canlet.2005.12.035 Google Scholar
  10. Clinical and Laboratory Standards Institute (CLSI) (2015) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 9 th ed. Approved standard M7–09. CLSI, Wayne, PAGoogle Scholar
  11. Cotelle N (2001) Role of flavonoids in oxidative stress. Curr Top Med Chem 1(6):569–590 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11895132 Google Scholar
  12. Coutinho MAS, Muzitano MF, Costa SS (2009) Flavonoides: Potenciais Agentes Terapêuticos Para o Processo Inflamatório flavonoids: potential therapeutic agents for the inflammatory process. Rev Virtual Quim 1(3):241–256.  https://doi.org/10.5935/1984-6835.20090024 Google Scholar
  13. de Graft-Johnson J, Nowak D (2016) Effect of selected plant phenolics on Fe2+-EDTA-H2O2 system mediated deoxyribose oxidation: molecular structure-derived relationships of anti- and pro-oxidant actions. Molecules 22(1).  https://doi.org/10.3390/molecules22010059
  14. De Young LM, Young JM, Ballaron SJ, Spires DA, Puhvel SM (1984) Intradermal injection of Propionibacterium acnes: a model of inflammation relevant to acne. J Investig Dermatol 83(5):394–398 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6238104 Google Scholar
  15. De Young LM, Kheifets JB, Ballaron SJ, Young JM (1989) Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents Actions 26(3–4):335–341 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2567568 Google Scholar
  16. Demina OM, Kartelishev AV, Karpova EI, Olga I, Danischuk OI (2017) Role of cytokines in the pathogenesis of acne. Int J Biomed 7(1):37–40.  https://doi.org/10.21103/Article7(1)_OA3 Google Scholar
  17. Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A (2016) The potential of plant Phenolics in prevention and therapy of skin disorders. Int J Mol Sci 17(2):160.  https://doi.org/10.3390/ijms17020160 Google Scholar
  18. El-Akawi Z, Abdel-Latif N, Abdul-Razzak K (2006) Does the plasma level of vitamins A and E affect acne condition? Clin Exp Dermatol 31(3):430–434.  https://doi.org/10.1111/j.1365-2230.2006.02106.x Google Scholar
  19. García-Rivera D, Delgado R, Bougarne N, Haegeman G, Berghe WV (2011) Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells. Cancer Lett 305(1):21–31.  https://doi.org/10.1016/j.canlet.2011.02.011 Google Scholar
  20. Gonzalez Ureña A, Orea JM, Montero C, Jiménez JB, González JL, Sánchez A, Dorado M (2003) Improving postharvest resistance in fruits by external application of trans-resveratrol. J Agric Food Chem 51(1):82–89.  https://doi.org/10.1021/jf020663v Google Scholar
  21. Gschwendt M, Kittstein W, Fürstenberger G, Marks F (1984) The mouse ear edema: a quantitatively evaluable assay for tumor promoting compounds and for inhibitors of tumor promotion. Cancer Lett 25:177–185Google Scholar
  22. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21(2):130–132 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6490072 Google Scholar
  23. Kawashima M, Nagare T, Doi M (2017) Clinical efficacy and safety of benzoyl peroxide for acne vulgaris: comparison between Japanese and Western patients. J Dermatol 44:1212–1218.  https://doi.org/10.1111/1346-8138.13996 Google Scholar
  24. Kerem Z, Bilkis I, Flaishman MA, Sivan L (2006) Antioxidant activity and inhibition of alpha-glucosidase by trans-resveratrol, piceid, and a novel trans-stilbene from the roots of Israeli Rumex bucephalophorus L. J Agric Food Chem 54(4):1243–1247.  https://doi.org/10.1021/jf052436 Google Scholar
  25. Kim J (2005) Review of the innate immune response in acne vulgaris: activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology 211(3):193–198.  https://doi.org/10.1159/000087011 Google Scholar
  26. Kim J, Ochoa MT, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, Brightbill HD, Holland D, Cunliffe WJ, Akira S, Sieling PA, Godowski PJ, Modlin RL (2002) Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 169(3):1535–1541 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed Google Scholar
  27. Kircik LH (2017) Fixed combination of clindamycin phosphate 1.2% and benzoyl peroxide 3.75% aqueous gel: long-term use in adult females with moderate acne vulgaris. J Drugs Dermatol 16(6):543–546 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed Google Scholar
  28. Lim YH, Kim IH, Seo JJ (2007) In vitro activity of kaempferol isolated from the Impatiens balsamina alone and in combination with erythromycin or clindamycin against Propionibacterium acnes. J Microbiol (Seoul, Korea) 45(5):473–477 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17978809 Google Scholar
  29. Mahfuzul H, Bari ML, Inatsu Y, Juneja VK, Kawamoto S (2007) Antibacterial activity of guava (Psidium guajava L.) and neem (Azadirachta indica A.Juss.) extracts against foodborne pathogens and apoilage bacteria. Foodborne Pathog Dis 4(4):1–8.  https://doi.org/10.1089/fpd.2007.0040 Google Scholar
  30. Maiti K, Mukherjee K, Gantait A, Ahamed HN, Saha BP, Mukherjee PK (2005) Enhanced therapeutic benefit of quercetin– phospholipid complex in carbon tetrachloride– induced acute liver injury in rats: a comparative study. Iran J Pharmacol Ther Res (RIDR) IJPT 405(4):1735–265742 Retrieved from http://ijpt.iums.ac.ir Google Scholar
  31. Melnik BC, Schmitz G (2013) Are therapeutic effects of antiacne agents mediated by activation of FoxO1 and inhibition of mTORC1? Exp Dermatol 22(7):502–504.  https://doi.org/10.1111/exd.12172 Google Scholar
  32. Mills OH, Criscito MC, Schlesinger TE, Verdicchio R, Szoke E (2016) Addressing free radical oxidation in acne vulgaris. J Clin Aesthet Dermatol 9(1):25–30 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26962389 Google Scholar
  33. Morganti P, Berardesca E, Guarneri B, Guarneri F, Fabrizi G, Palombo P, Palombo M (2011) Topical clindamycin 1% vs. linoleic acid-rich phosphatidylcholine and nicotinamide 4% in the treatment of acne: a multicentre-randomized trial. Int J Cosmet Sci 33(5):467–476.  https://doi.org/10.1111/j.1468-2494.2011.00658.x Google Scholar
  34. Omer H, McDowell A, Alexeyev OA (2017) Understanding the role of Propionibacterium acnes in acne vulgaris: the critical importance of skin sampling methodologies. Clin Dermatol 35(2):118–129.  https://doi.org/10.1016/j.clindermatol.2016.10.003 Google Scholar
  35. Ottaviani M, Alestas T, Flori E, Mastrofrancesco A, Zouboulis CC, Picardo M (2006) Peroxidated squalene induces the production of inflammatory mediators in HaCaT keratinocytes: a possible role in acne vulgaris. J Investig Dermatol 126(11):2430–2437.  https://doi.org/10.1038/sj.jid.5700434 Google Scholar
  36. Pandurangan AK, Mohebali N, Mohd EN, Looi CY, Ismail S, Saadatdoust Z (2015) Gallic acid suppresses inflammation in dextran sodium sulfate-induced colitis in mice: possible mechanisms. Int Immunopharmacol 28(2):1034–1043.  https://doi.org/10.1016/j.intimp.2015.08.019 Google Scholar
  37. Pornpattananangkul D, Fu V, Thamphiwatana S, Zhang L, Chen M, Vecchio J, Zhang L (2013) In vivo treatment of Propionibacterium acnes infection with liposomal lauric acids. Adv Healthc Mater 2(10):1322–1328.  https://doi.org/10.1002/adhm.201300002 Google Scholar
  38. Singh AK, Kumar S, Vinayak M (2018) Recent development in antihyperalgesic effect of phytochemicals: anti-inflammatory and neuro-modulatory actions. Inflamm Res 67:633–654.  https://doi.org/10.1007/s00011-018-1156-5 Google Scholar
  39. Taylor EJM, Yu Y, Champer J, Kim J (2014) Resveratrol demonstrates antimicrobial effects against Propionibacterium acnes in vitro. Dermatol Ther 4(2):249–257.  https://doi.org/10.1007/s13555-014-0063-0 Google Scholar
  40. Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27(3):502–522 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4388022 Google Scholar
  41. Tsai TH, Chuang LT, Lien TJ, Liing YR, Chen WY, Tsai PJ (2013) Rosmarinus officinalis extract suppresses Propionibacterium acnes-induced inflammatory responses. J Med Food 16(1):324–333.  https://doi.org/10.1089/jmf.2012.2577 Google Scholar
  42. Valacchi G, Rimbach G, Saliou C, Weber SU, Packer L (2001) Effect of benzoyl peroxide on antioxidant status, NF-kappaB activity and interleukin-1alpha gene expression in human keratinocytes. Toxicology 165(2–3):225–234 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/ Google Scholar
  43. Verma S, Singh A, Mishra A (2013) Gallic acid: molecular rival of cancer. Environ Toxicol Pharmacol 35(3):473–485.  https://doi.org/10.1016/j.etap.2013.02.011 Google Scholar
  44. Vicentini FTMC, Fonseca YM, Pitol DL, Iyomassa MM, Bentley MVLB, Fonseca MJV (2010) Evaluation of protective effect of a water-in-oil microemulsion incorporating quercetin against UVB-induced damage in hairless mice skin. J Pharm Pharm Sci 13(2):274–275 Retrieved from http://www.cspscanada.org Google Scholar
  45. Vimala S, Balaji V, Anusha T, Elangovan V (2014) Topical application fo gallic acid suppresses the 7, 12-DMBA/croton oil induced two-step skin carcinogenesis by modulating anti-oxidants and MMP-2/MMP-9 in Swiss albino mice. Food Chem Toxicol 66:44–55.  https://doi.org/10.1016/j.fct.2014.01.017 Google Scholar
  46. Wang X, Huang H, Ma X, Wang L, Liu C, Hou B, Du G (2018) Anti-inflammatory effects and mechanism of the total flavonoids from Artemisia scoparia Waldst. et kit. in vitro and in vivo. Biomed Pharmacother 104:390–403.  https://doi.org/10.1016/j.biopha.2018.05.054 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zípora Morgana Quinteiro dos Santos
    • 1
  • Marlene Quinteiro dos Santos
    • 2
  • Vilmair Zancanaro
    • 1
    • 3
  • Emyr Hiago Bellaver
    • 1
    • 3
  • Geisson Marcos Nardi
    • 1
    • 4
  • Jane Mary Lafayet Gelinski
    • 1
  • Claudriana Locatelli
    • 1
    • 3
    • 5
    Email author
  1. 1.Programa de Pós-Graduação em Ciência e BiotecnologiaUniversidade do Oeste de Santa Catarina – UNOESC, Campus VideiraVideiraBrazil
  2. 2.Centro de Hematologia e Hemoterapia do Estado do ParanaCuritibaBrazil
  3. 3.Universidade Alto Vale do Rio do Peixe – UNIARP, Campus CaçadorCaçadorBrazil
  4. 4.Universidade Federal de Santa Catarina – UFSC, Campus FlorianópolisFlorianópolisBrazil
  5. 5.Programa de Pós-Graduação em Biociências e SaudeUniversidade do Oeste de Santa Catarina - UNOESC, Campus JoaçabaJoaçabaBrazil

Personalised recommendations