Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 390, Issue 11, pp 1163–1172 | Cite as

Anti-nociceptive effect of stigmasterol in mouse models of acute and chronic pain

  • Cristiani Isabel Banderó Walker
  • Sara Marchesan Oliveira
  • Raquel Tonello
  • Mateus Fortes Rossato
  • Evelyne da Silva Brum
  • Juliano Ferreira
  • Gabriela Trevisan
Original Article


Stigmasterol is a common sterol found in plants, but the anti-nociceptive effect of this compound and its mechanism of action are not fully explored. Thus, in the present study, the anti-nociceptive effect of stigmasterol was investigated in acute and chronic models of pain and its mechanism of action. We used adult male albino Swiss mice (25–35 g) to observe the anti-nociceptive effect of stigmasterol in acetic-acid writhing test or in complete Freund’s adjuvant injection, surgical incision in hind paw, or partial sciatic nerve ligation. Moreover, we investigate the involvement of opioid receptors (naloxone, 2 mg/kg, intraperitoneally) in stigmasterol anti-nociceptive effect and stigmasterol action on acetylcholinesterase activity. Some possible adverse effects caused by stigmasterol were also investigated. Stigmasterol (0.3–3 mg/kg, orally) exhibited an anti-nociceptive effect on acetic-acid-induced writhing test. Furthermore, it markedly attenuated the mechanical allodynia caused by surgical incision (after acute treatment with stigmasterol, preventive and curative effects were observed) and partial sciatic nerve ligation (after acute treatment with stigmasterol) and complete Freund’s adjuvant (after acute or repeated treatment with stigmasterol). The anti-nociceptive effect of stigmasterol was not reversed by naloxone. Moreover, stigmasterol did not alter in vitro acetylcholinesterase activity in spinal cord or brain samples. Also, stigmasterol did not cause gastric ulcers or alter the gastrointestinal transit of mice. Taken together, these results support the potential anti-nociceptive effect of stigmasterol in different models of pain.


Anti-nociception Neuropathic pain Postoperative pain Inflammatory pain Acetylcholine Opioid 





Complete Freund’s adjuvant


5,5′-Dithiobis(2-nitrobenzoic acid)






Phosphate-buffered solution





This study was supported by Conselho Nacional de Desenvolvimento Científico (CNPq) and by Financiadora de Estudos e Projetos (FINEP). The fellowships from CNPq and CAPES are also acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ali H, Dixit S, Ali D, Alqahtani SM, Alkahtani S, Alarifi S (2015) Isolation and evaluation of anticancer efficacy of stigmasterol in a mouse model of DMBA-induced skin carcinoma. Drug Des Devel Ther 28:2793–2800CrossRefGoogle Scholar
  2. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brennan TJ, Umali EF, Zahn PK (1997) Comparison of pre- versus post-incision administration of intrathecal bupivacaine and intrathecal morphine in a rat model of postoperative pain. Anesthesiology 87:1517–1528CrossRefPubMedGoogle Scholar
  4. Brum ES, Moreira LR, da Silva ARH, Boligon AA, Carvalho FB, Athayde ML, Brandão R, Oliveira SM (2016) Tabernaemontana catharinensis ethyl acetate fraction presents antinociceptive activity without causing toxicological effects in mice. J Ethnopharmacol 191:115–124CrossRefGoogle Scholar
  5. Brune K, Patrignani P (2015) New insights into the use of currently available non-steroidal anti-inflammatory drugs. J Pain Res 20:105–118CrossRefGoogle Scholar
  6. Calixto JB, Beirith A, Ferreira J, Santos AR, Filho VC, Yunes RA (2000) Naturally occurring antinociceptive substances from plants. Phytother Res 14(6):401–418CrossRefPubMedGoogle Scholar
  7. Cazacu I, Mogosan C, Loghin F (2015) Safety issues of current analgesics: an update. Clujul Medical 88:128CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chou R, Gordon DB, de Leon-Casasola OA, Rosenberg JM, Bickler S, Brennan T, Carter T, Cassidy CL, Chittenden EH, Degenhardt E, Griffith S, Manworren R, McCarberg B, Montgomery R, Murphy J, Perkal MF, Suresh S, Sluka K, Strassels S, Thirlby R, Viscusi E, Walco GA, Warner L, Weisman SJ, Wu CL (2016) Management of Postoperative Pain: a Clinical Practice Guideline from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists’ Committee on Regional Anesthesia, Executive Committee, and Administrative Council. J Pain 17:131–157CrossRefPubMedGoogle Scholar
  9. Cohen SP, Mao J (2014) Neuropathic pain: mechanisms and their clinical implications. BMJ 348:f7656CrossRefPubMedGoogle Scholar
  10. Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462CrossRefPubMedGoogle Scholar
  11. Ferreira J, Campos MM, Pesquero JB, Araújo RC, Bader M, Calixto JB (2001) Evidence for the participation of kinins in Freund’s adjuvant-induced inflammatory and nociceptive responses in kinin B1 and B2 receptor knockout mice. Neuropharmacology 41:1006–1012CrossRefPubMedGoogle Scholar
  12. Ferreira J, Beirith A, Mori MA, Araújo RC, Bader M, Pesquero JB, Calixto JB (2005) Reduced nerve injury-induced neuropathic pain in kinin B1 receptor knock-out mice. J Neurosci 25:2405–2412CrossRefPubMedGoogle Scholar
  13. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, Gilron I, Haanpää M, Hansson P, Jensen TS, Kamerman PR, Lund K, Moore A, Raja SN, Rice AS, Rowbotham M, Sena E, Siddall P, Smith BH, Wallace M (2015) Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 14:162–173CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fiorino DF, Garcia-Guzman M (2012) Muscarinic pain pharmacology: realizing the promise of novel analgesics by overcoming old challenges. Handb Exp Pharmacol 208:191–221CrossRefGoogle Scholar
  15. Gabay O, Sanchez C, Salvat C, Chevy F, Breton M, Nourissat G, Wolf C, Jacques C, Berenbaum F (2010) Stigmasterol: a phytosterol with potential anti-osteoarthritic properties. Osteoarthr Cartil 18:106–116CrossRefPubMedGoogle Scholar
  16. Gade S, Rajamanikyam M, Vadlapudi V, Nukala KM, Aluvala R, Giddigari C, Karanam NJ, Barua NC, Pandey R, Upadhyayula VS, Sripadi P, Amanchy R, Upadhyayula SM (2016) Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochim Biophys Acta 1861:541–550CrossRefPubMedGoogle Scholar
  17. Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA (2013) An overview of animal models of pain: disease models and outcome measures. J Pain 14:1255–1269CrossRefPubMedGoogle Scholar
  18. Hamann FR, Zago AM, Rossato MF, Beck VR, Mello CF, de Brum TF, de Carvalho LM, Faccin H, Oliveira SM, Rubin MA (2016) Antinociceptive and antidepressant-like effects of the crude extract of Vitex Megapotamica in rats. J Ethnopharmacol 192:210–216CrossRefPubMedGoogle Scholar
  19. Huo Y, Guo C, Zhang QY, Chen WS, Zheng HC, Rahman K, Qin LP (2007) Antinociceptive activity and chemical composition of constituents from Caragana Microphylla seeds. Phytomedicine 14:143–146CrossRefPubMedGoogle Scholar
  20. Kaur N, Chaudhary J, Jain A, Kishore L (2011) Stigmasterol: a comprehensive review. Int J Pharm Sci Res 2:2259–2265Google Scholar
  21. Latremoliere A, Woolf CJ (2010) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10:895–926CrossRefGoogle Scholar
  22. Li C, Liu Y, Xie Z, Lu Q, Luo S (2015) Stigmasterol protects against Ang II-induced proliferation of the A7r5 aortic smooth muscle cell-line. Food Funct 6:2266–2272CrossRefPubMedGoogle Scholar
  23. Lolignier S, Eijkelkamp N, Wood JN (2015) Mechanical allodynia. Pflugers Arch 467:133–139CrossRefPubMedGoogle Scholar
  24. Magistretti MJ, Conti M, Cristoni A (1988) Antiulcer activity of an anthocyanidin FromVacciniummyrtillus. Arzneimittelforschung 38:686–690PubMedGoogle Scholar
  25. Mathews M (2014) Multimodal treatment of pain. Neurosurg Clin N Am 25:803–808CrossRefPubMedGoogle Scholar
  26. Milano J, Oliveira SM, Rossato MF, Sauzem PD, Machado P, Beck P, Zanatta N, Martins MA, Mello CF, Rubin MA, Ferreira J, Bonacorso HG (2008) Antinociceptive effect of novel trihalomethyl-substituted pyrazoline methyl esters in formalin and hot-plate tests in mice. Eur J Pharmacol 26:86–96CrossRefGoogle Scholar
  27. Negus SS, Vanderah TW, Brandt MR, Bilsky EJ, Becerra L, Borsook D (2006) Preclinical assessment of candidate analgesic drugs: recent advances and future challenges. J Pharmacol Exp Ther 319:507–514CrossRefPubMedGoogle Scholar
  28. McEntire DM, Kirkpatrick DR, Dueck NP, Kerfeld MJ, Smith TA, Nelson TJ, Reisbig MD, Agrawal DK (2016) Pain transduction: a pharmacologic perspective. Expert Rev Clin Pharmacol 9:1069–1080CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mora-Ranjeva MP, Charveron M, Fabre B, Milon A, Muller I (2006) Incorporation of phytosterols in human keratinocytes. Consequences on UVA-induced lipid peroxidation and calcium ionophore-induced release. Chem Phys Lipids 141:216–224CrossRefPubMedGoogle Scholar
  30. Moreira LR, Brum ES, da Silva ARH, de Freitas ML, Teixeira TP, Boligon AA, Athayde ML, Duarte T, Duarte MMMF, Oliveira SM, Brandão R (2016) Antinociceptive and anti-inflammatory effect of the Scutia buxifolia Reissek stem barks extract. Phytomedicine 23:1021–1028CrossRefGoogle Scholar
  31. Oliveira SM, Gewehr C, Dalmolin GD, Cechinel CA, Wentz A, Lourega RV, Sehnem RC, Zanatta N, Martins MA, Rubin MA, Bonacorso HG, Ferreira J (2009) Antinociceptive effect of a novel tosylpyrazole compound in mice. Basic Clin Pharmacol Toxicol 104:122–129CrossRefPubMedGoogle Scholar
  32. Oliveira SM, Drewes CC, Silva CR, Trevisan G, Boschen SL, Moreira CG, de Almeida CD, Da Cunha C, Ferreira J (2011) Involvement of mast cells in a mouse model of postoperative pain. Eur J Pharmacol 672:88–95CrossRefPubMedGoogle Scholar
  33. Pacheco DF, Freitas ACN, Pimenta AMC, Duarte IDG, de Lima ME (2016) A spider derived peptide, PnPP-19, induces central antinociception mediated by opioid and cannabinoid systems. J Venom Anim Toxins Incl Trop Dis 22:34CrossRefGoogle Scholar
  34. Pereira ME, Adams AIH, Silva NS (2004) 2,5-Hexanedione inhibits rat brain acetylcholinesterase activity in vitro. Toxicol Lett 146:269–274CrossRefPubMedGoogle Scholar
  35. Pogatzki-Zahn EM, Zahn PK, Brennan TJ (2007) Postoperative pain—clinical implications of basic research. Best Pract Res Clin Anaesthesiol 21:3–13CrossRefPubMedGoogle Scholar
  36. Porreca F, Mosberg HI, Omnaas JR, Burks TF, Cowan A (1987) Supraspinal and spinal potency of selective opioid agonists in the mouse writhing test. J Pharmacol Exp Ther 240:890–894PubMedGoogle Scholar
  37. Ramu R, Shirahatti PS, Nayakavadi SRV, Zameer F, Dhananjaya BL, Prasad MN (2016) The effect of a plant extract enriched in stigmasterol and β-sitosterol on glycaemic status and glucose metabolism in alloxan-induced diabetic rats. Food Funct 7:3999–4011CrossRefPubMedGoogle Scholar
  38. Roeckel LA, Le Coz GM, Gavériaux-Ruff C, Simonin F (2016) Opioid-induced hyperalgesia: cellular and molecular mechanisms. Neuroscience 338:160–182CrossRefPubMedGoogle Scholar
  39. Rossato MF, Trevisan G, Walker CIB, Klafke JZ, de Oliveira AP, Villarinho JG, Zanon RB, Royes LFF, Athayde ML, Gomez MV, Ferreira J (2011) Eriodictyol: a flavonoid antagonist of the TRPV1 receptor with antioxidant activity. Biochem Pharmacol 81:544–551CrossRefPubMedGoogle Scholar
  40. Santos AR, Niero R, Filho VC, Yunes RA, Pizzolatti MG, Delle Monache F, Calixto JB (1995) Antinociceptive properties of steroids isolated from Phyllanthus corcovadensis in mice. Planta Med 61:329–332CrossRefPubMedGoogle Scholar
  41. Trevisan G, Maldaner G, Velloso NA, Sant'Anna G da S, Ilha V, Velho Gewehr C de C, Rubin MA, Morel AF, Ferreira J (2009) Antinociceptive effects of 14-membered cyclopeptide alkaloids. J Nat Prod. 72:608-12.Google Scholar
  42. Trevisan G, Rossato MF, Walker CI, Klafke JZ, Rosa F, Oliveira SM, Tonello R, Guerra GP, Boligon AA, Zanon RB, Athayde ML, Ferreira J (2012) Identification of the plant steroid α-spinasterol as a novel transient receptor potential vanilloid 1 antagonist with antinociceptive properties. J Pharmacol Exp Ther 343:258–269CrossRefPubMedGoogle Scholar
  43. Walker CIB, Trevisan G, Rossato MF, Franciscato C, Pereira ME, Ferreira J, Manfron MP (2008) Antinociceptive activity of Mirabilis jalapa in mice. J Ethnopharmacol 120:169–175CrossRefPubMedGoogle Scholar
  44. Walker CIB, Trevisan G, Rossato MF, Silva CR, Pinheiro FV, Franciscato C, Tatsch E, Moretto MB, Silva MD, Manfron MP, Noal Moresco R, Santos AR, Pereira ME, Ferreira J (2013) Antinociceptive effect of Mirabilis jalapa on acute and chronic pain models in mice. J Ethnopharmacol 149:685–693CrossRefPubMedGoogle Scholar
  45. Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733CrossRefPubMedGoogle Scholar
  46. Yoon MH, Choi JI, Jeong SW (2003) Antinociception of intrathecal cholinesterase inhibitors and cholinergic receptors in rats. Acta Anaesthesiol Scand 47:1079–1084CrossRefPubMedGoogle Scholar
  47. Zeb A, Ahmad S, Ullah F, Ayaz M, Sadiq A (2016) Anti-nociceptive activity of ethnomedicinally important analgesic plant Isodon rugosus wall. ex Benth: mechanistic study and identifications of bioactive compounds. Front Pharmacol 7:200CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Cristiani Isabel Banderó Walker
    • 1
  • Sara Marchesan Oliveira
    • 2
  • Raquel Tonello
    • 3
  • Mateus Fortes Rossato
    • 4
  • Evelyne da Silva Brum
    • 2
  • Juliano Ferreira
    • 3
  • Gabriela Trevisan
    • 5
  1. 1.Programa de Pós-Graduação em Ciências FarmacêuticasUniversidade Federal de SergipeSão CristóvãoBrazil
  2. 2.Programa de Pós-Graduação em Ciências Biológicas: Bioquímica ToxicológicaUniversidade Federal de Santa MariaSanta MariaBrazil
  3. 3.Programa de Pós-Graduação em FarmacologiaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  4. 4.Programa de Pós-Graduação em FarmacologiaUniversidade de São Paulo (USP)São PauloBrazil
  5. 5.Programa de Pós-Graduação em FarmacologiaUniversidade Federal de Santa Maria (UFSM)Santa MariaBrazil

Personalised recommendations