Inhibitors of ceramide de novo biosynthesis rescue damages induced by cigarette smoke in airways epithelia

  • Aida Zulueta
  • Anna Caretti
  • Giuseppe Matteo Campisi
  • Andrea Brizzolari
  • Jose Luis Abad
  • Rita Paroni
  • Paola Signorelli
  • Riccardo Ghidoni
Brief Communication

Abstract

Exposure to cigarette smoke represents the most important risk factor for the development of chronic obstructive pulmonary disease (COPD). COPD is characterized by chronic inflammation of the airways, imbalance of proteolytic activity resulting in the destruction of lung parenchyma, alveolar hypoxia, oxidative stress, and apoptosis. Sphingolipids are structural membrane components whose metabolism is altered during stress. Known as apoptosis and inflammation inducer, the sphingolipid ceramide was found to accumulate in COPD airways and its plasma concentration increased as well. The present study investigates the role of sphingolipids in the cigarette smoke-induced damage of human airway epithelial cells. Lung epithelial cells were pre-treated with sphingolipid synthesis inhibitors (myriocin or XM462) and then exposed to a mixture of nicotine, acrolein, formaldehyde, and acetaldehyde, the major toxic cigarette smoke components. The inflammatory and proteolytic responses were investigated by analysis of the mRNA expression (RT-PCR) of cytokines IL-1β and IL-8, and matrix metalloproteinase-9 and of the protein expression (ELISA) of IL-8. Ceramide intracellular amounts were measured by LC-MS technique. Ferric-reducing antioxidant power test and superoxide anion radical scavenging activity assay were used to assess the antioxidant power of the inhibitors of ceramide synthesis. We here show that ceramide synthesis is enhanced under treatment with a cigarette smoke mixture correlating with increased expression of inflammatory cytokines and matrix metalloproteinase 9. The use of inhibitors of ceramide synthesis protected from smoke induced damages such as inflammation, oxidative stress, and proteolytic imbalance in airways epithelia.

Keywords

Sphingolipids Ceramide Cigarette smoke Inflammation Oxidative stress Chronic obstructive pulmonary disease 

References

  1. Adada M, Luberto C, Canals D (2016) Inhibitors of the sphingomyelin cycle: Sphingomyelin synthases and sphingomyelinases. Chem Phys Lipids 197:45–59. doi:10.1016/j.chemphyslip.2015.07.008 CrossRefPubMedGoogle Scholar
  2. Arocho A, Chen B, Ladanyi M, Pan Q (2006) Validation of the 2-DeltaDeltaCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn Mol Pathol: Am J Surg Pathol part B 15:56–61CrossRefGoogle Scholar
  3. Azad N, Rojanasakul Y, Vallyathan V (2008) Inflammation and lung cancer: roles of reactive oxygen/nitrogen species journal of toxicology and environmental health part B. Crit Rev 11:1–15. doi:10.1080/10937400701436460 Google Scholar
  4. Benzie IF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27CrossRefPubMedGoogle Scholar
  5. Bodas M, Min T, Vij N (2011) Critical role of CFTR-dependent lipid rafts in cigarette smoke-induced lung epithelial injury. Am J Physiol Lung Cell Mol Physiol 300:L811–L820. doi:10.1152/ajplung.00408.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brodlie M et al (2010) Ceramide is increased in the lower airway epithelium of people with advanced cystic fibrosis lung disease. Am J Respir Crit Care Med 182:369–375. doi:10.1164/rccm.200905-0799OC CrossRefPubMedGoogle Scholar
  7. Caretti A et al (2014) Anti-inflammatory action of lipid nanocarrier-delivered myriocin: therapeutic potential in cystic fibrosis. Biochim Biophys Acta 1840:586–594. doi:10.1016/j.bbagen.2013.10.018 CrossRefPubMedGoogle Scholar
  8. Caretti A et al (2016) Inhibition of ceramide de novo synthesis by myriocin produces the double effect of reducing pathological inflammation and exerting antifungal activity against. A Fumigatus Airways Infection Biochimica et Biophysica Acta 1860:1089–1097. doi:10.1016/j.bbagen.2016.02.014 CrossRefPubMedGoogle Scholar
  9. Caron L, Karkazis K, Raffin TA, Swan G, Koenig BA (2005) Nicotine addiction through a neurogenomic prism: ethics, public health, and smoking. Nicotine Tob Res.: Off J Soc Res Nicotine Tobacco 7:181–197 doi:10.1080/14622200500055251
  10. Cheah NP, Pennings JL, Vermeulen JP, van Schooten FJ, Opperhuizen A (2013) In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells. Toxicol in vitro : Int J Pub Assoc BIBRA 27:1072–1081. doi:10.1016/j.tiv.2013.02.003 CrossRefGoogle Scholar
  11. Counts ME, Morton MJ, Laffoon SW, Cox RH, Lipowicz PJ (2005) Smoke composition and predicting relationships for international commercial cigarettes smoked with three machine-smoking conditions. Regulat Toxicol Pharmacol: RTP 41:185–227. doi:10.1016/j.yrtph.2004.12.002 CrossRefGoogle Scholar
  12. Dechecchi MC et al (2011) Modulators of sphingolipid metabolism reduce lung inflammation. Am J Respir Cell Mol Biol 45:825–833. doi:10.1165/rcmb.2010-0457OC CrossRefPubMedGoogle Scholar
  13. Deshmukh HS et al (2008) Acrolein-activated matrix metalloproteinase 9 contributes to persistent mucin production. Am J Respir Cell Mol Biol 38:446–454. doi:10.1165/rcmb.2006-0339OC CrossRefPubMedGoogle Scholar
  14. Eisner MD et al (2010) An official American Thoracic Society public policy statement: novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 182:693–718. doi:10.1164/rccm.200811-1757ST CrossRefPubMedGoogle Scholar
  15. Eldridge A, Betson TR, Gama MV, McAdam K (2015) Variation in tobacco and mainstream smoke toxicant yields from selected commercial cigarette products. Regul Toxicol Pharmacol: RTP 71:409–427. doi:10.1016/j.yrtph.2015.01.006 CrossRefPubMedGoogle Scholar
  16. Filosto S et al (2011) Neutral sphingomyelinase 2: a novel target in cigarette smoke-induced apoptosis and lung injury. Am J Respir Cell Mol Biol 44:350–360. doi:10.1165/rcmb.2009-0422OC CrossRefPubMedGoogle Scholar
  17. Finkelstein EI, Ruben J, Koot CW, Hristova M, van der Vliet A (2005) Regulation of constitutive neutrophil apoptosis by the alpha,beta-unsaturated aldehydes acrolein and 4-hydroxynonenal. Am J Physiol Lung Cell Mol Physiol 289:L1019–L1028. doi:10.1152/ajplung.00227.2005 CrossRefPubMedGoogle Scholar
  18. Gagliostro V et al (2012) Dihydroceramide delays cell cycle G1/S transition via activation of ER stress and induction of autophagy. Int J Biochem Cell Biol 44:2135–2143. doi:10.1016/j.biocel.2012.08.025 CrossRefPubMedGoogle Scholar
  19. Gamble E et al (2007) Airway mucosal inflammation in COPD is similar in smokers and ex-smokers: a pooled analysis. Eur Respir J 30:467–471. doi:10.1183/09031936.00013006 CrossRefPubMedGoogle Scholar
  20. Lea SR, Metcalfe HJ, Plumb J, Beerli C, Poll C, Singh D, Abbott-Banner KH (2016) Neutral sphingomyelinase-2, acid sphingomyelinase, and ceramide levels in COPD patients compared to controls. Int J Chron Obstruct Pulmon Dis 11:2139–2147. doi:10.2147/COPD.S95578 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lozano R et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2095–2128. doi:10.1016/S0140-6736(12)61728-0 CrossRefPubMedGoogle Scholar
  22. Merrill AH Jr, Sullards MC, Allegood JC, Kelly S, Wang E (2005) Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36:207–224. doi:10.1016/j.ymeth.2005.01.009 CrossRefPubMedGoogle Scholar
  23. Moon HG et al (2014) CCN1 secretion and cleavage regulate the lung epithelial cell functions after cigarette smoke. Am J Physiol Lung Cell Mol Physiol 307:L326–L337. doi:10.1152/ajplung.00102.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Munoz-Olaya JM et al (2008) Synthesis and biological activity of a novel inhibitor of dihydroceramide desaturase. ChemMedChem 3:946–953. doi:10.1002/cmdc.200700325 CrossRefPubMedGoogle Scholar
  25. Petrache I et al (2005) Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med 11:491–498. doi:10.1038/nm1238 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Reforgiato MR et al (2016) Inhibition of ceramide de novo synthesis as a postischemic strategy to reduce myocardial reperfusion injury. Basic Res Cardiol 111:12. doi:10.1007/s00395-016-0533-x CrossRefPubMedGoogle Scholar
  27. Schweitzer KS et al (2015) Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am J Physiol Lung Cell Mol Physiol 309:L175–L187. doi:10.1152/ajplung.00411.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Signorelli P et al (2015) Natural grape extracts regulate colon cancer cells malignancy. Nutr Cancer 67:494–503. doi:10.1080/01635581.2015.1004591 CrossRefPubMedGoogle Scholar
  29. Stampfli MR, Anderson GP (2009) How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat Rev Immunol 9:377–384. doi:10.1038/nri2530 CrossRefPubMedGoogle Scholar
  30. Telenga ED et al (2014) Untargeted lipidomic analysis in chronic obstructive pulmonary disease. Uncovering Sphingolipids Am J Respir Crit Care Med 190:155–164. doi:10.1164/rccm.201312-2210OC CrossRefPubMedGoogle Scholar
  31. van der Toorn M et al (2013) Critical role of aldehydes in cigarette smoke-induced acute airway inflammation. Respir Res 14:45. doi:10.1186/1465-9921-14-45 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Yen GC, Duh PD (1994) Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J Agric Food Chem 42:629–632. doi:10.1021/jf00039a005 CrossRefGoogle Scholar
  33. Zarban A, Taheri F, Chahkandi T, Sharifzadeh G, Khorashadizadeh M (2009) Antioxidant and radical scavenging activity of human colostrum, transitional and mature milk. J Clin Biochem Nutr 45:150–154. doi:10.3164/jcbn.08-233 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zheng W et al (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta 1758:1864–1884. doi:10.1016/j.bbamem.2006.08.009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Health Sciences Department, Biochemistry & Mol. Biology Lab.University of MilanMilanItaly
  2. 2.Health Sciences Department, Clinical Biochemistry &Mass Spectrometry LabUniversity of MilanMilanItaly
  3. 3.Department of Biomed. Chem., IQAC/CSICResearch Unit on Bioactive MoleculesBarcelonaSpain

Personalised recommendations