Skip to main content
Log in

Stimulation of β1- and β2-adrenoceptors dilates retinal blood vessels in rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Our previous studies have demonstrated that adrenaline dilates rat retinal arterioles by stimulating propranolol-sensitive β-adrenoceptors and β3-adrenoceptors, and selective stimulation of β2- or β3-adrenoceptors causes retinal vasodilator responses. In the present study, we compared the effects of β1- and β2-adrenoceptor stimulation on rat retinal arterioles in vivo. Rat ocular fundus images were captured using an original high-resolution digital fundus camera. Diameters of retinal arterioles contained in the images were measured. Systemic blood pressure and heart rate were recorded continuously. Denopamine, a β1-adrenoceptor agonist, increased the diameter of retinal arterioles and heart rate, and produced a small but statistically insignificant decrease in mean arterial pressure. CGP20712A, a β1-adrenoceptor antagonist, but not ICI118551, a β2-adrenoceptor antagonist, significantly prevented denopamine-induced retinal vasodilator and heart rate responses. Salbutamol, a β2-adrenoceptor agonist, increased the diameter of retinal arterioles and decreased mean arterial pressure without significantly changing heart rate. The effects of salbutamol were significantly prevented by ICI118551, but not by CGP20712A. These results suggest that stimulation of β1- and β2-adrenoceptors dilates retinal blood vessels and indicate that all three β-adrenoceptor subtypes (β1, β2, and β3) may be involved in the retinal vasodilator response to adrenaline in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelrahman A, Tabrizchi R, Pang CC (1990) Effects of β1- and β2-adrenoceptor stimulation on hemodynamics in the anesthetized rat. J Cardiovasc Pharmacol 15:720–728

    Article  CAS  PubMed  Google Scholar 

  • Aikawa J, Koike K, Takayanagi I (1991) Vascular smooth muscle relaxation by alpha 1-adrenoceptor blocking action of denopamine in isolated rabbit aorta. J Cardiovasc Pharmacol 17:440–444

    Article  CAS  PubMed  Google Scholar 

  • Baker JG, Kemp P, March J, Fretwell L, Hill SJ, Gardiner SM (2011) Predicting in vivo cardiovascular properties of β-blockers from cellular assays: a quantitative comparison of cellular and cardiovascular pharmacological responses. FASEB J 25:4486–4497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiba S, Tsukada M (2001) Vascular responses to beta-adrenoceptor subtype-selective agonists with and without endothelium in rat common carotid arteries. J Auton Pharmacol 21:7–13

    Article  CAS  PubMed  Google Scholar 

  • Dawes M, Chowienczyk PJ, Ritter JM (1997) Effects of inhibition of the L-arginine/nitric oxide pathway on vasodilation caused by β-adrenergic agonists in human forearm. Circulation 95:2293–2297

    Article  CAS  PubMed  Google Scholar 

  • De La Cruz JP, Gonzalez-Correa JA, Guerrero A, de la Cuesta FS (2004) Pharmacological approach to diabetic retinopathy. Diabetes Metab Res Rev 20:91–113

    Article  CAS  PubMed  Google Scholar 

  • Delaey C, Van De Voorde J (2000) Regulatory mechanisms in the retinal and choroidal circulation. Ophthalmic Res 32:249–256

    Article  CAS  PubMed  Google Scholar 

  • Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefansson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21:359–393

    Article  PubMed  Google Scholar 

  • Fujimoto S, Itoh T (1995) Denopamine as an alpha 1H-adrenoceptor antagonist in isolated blood vessels. Eur J Pharmacol 280:143–147

    Article  CAS  PubMed  Google Scholar 

  • Grieshaber MC, Flammer J (2005) Blood flow in glaucoma. Curr Opin Ophthalmol 16:79–83

    Article  PubMed  Google Scholar 

  • Ikezono K, Zerkowski HR, Beckeringh JJ, Michel MC, Brodde OE (1987) β2-adrenoceptor-mediated relaxation of the isolated human saphenous vein. J Pharmacol Exp Ther 241:294–299

    CAS  PubMed  Google Scholar 

  • Jackson CV, Pope TK, Lucchesi BR (1987) Coronary artery vasodilation in the canine: physiological and pharmacological roles of beta-adrenergic receptors. J Cardiovasc Pharmacol 10:196–204

    Article  CAS  PubMed  Google Scholar 

  • Kino M, Hirota Y, Yamamoto S, Sawada K, Moriguchi M, Kotaka M, Kubo S, Kawamura K (1983) Cardiovascular effects of a newly synthesized cardiotonic agent (TA-064) on normal and diseased hearts. Am J Cardiol 51:802–810

    Article  CAS  PubMed  Google Scholar 

  • Leblais V, Delannoy E, Fresquet F, Bégueret H, Bellance N, Banquet S, Allières C, Leroux L, Desgranges C, Gadeau A, Muller B (2008) Beta-adrenergic relaxation in pulmonary arteries: preservation of the endothelial nitric oxide-dependent beta2 component in pulmonary hypertension. Cardiovasc Res 77:202–210

    Article  CAS  PubMed  Google Scholar 

  • Monopoli A, Conti A, Forlani A, Ongini E (1993) β1 and β2 adrenoceptors are involved in mediating vasodilation in the human coronary artery. Pharmacol Res 27:273–279

    Article  CAS  PubMed  Google Scholar 

  • Mori A, Saito M, Sakamoto K, Narita M, Nakahara T, Ishii K (2007) Stimulation of prostanoid IP and EP2 receptors dilates retinal arterioles and increases retinal and choroidal blood flow in rats. Eur J Pharmacol 570:135–141

    Article  CAS  PubMed  Google Scholar 

  • Mori A, Saigo O, Hanada M, Nakahara T, Ishii K (2009) Hyperglycemia accelerates impairment of vasodilator responses to acetylcholine of retinal blood vessels in rats. J Pharmacol Sci 110:160–168

    Article  CAS  PubMed  Google Scholar 

  • Mori A, Miwa T, Sakamoto K, Nakahara T, Ishii K (2010) Pharmacological evidence for the presence of functional β3-adrenoceptors in rat retinal blood vessels. Naunyn Schmiedeberg’s Arch Pharmacol 382:119–126

    Article  CAS  Google Scholar 

  • Mori A, Nakahara T, Sakamoto K, Ishii K (2011) Role of β3-adrenoceptors in regulation of retinal vascular tone in rats. Naunyn Schmiedeberg’s Arch Pharmacol 384:603–608

    Article  CAS  Google Scholar 

  • Najafipour H, Ferrell WR (1993) Sympathetic innervation and beta-adrenoceptor profile of blood vessels in the posterior region of the rabbit knee joint. Exp Physiol 78:625–637

    Article  CAS  PubMed  Google Scholar 

  • Nakane T, Tsujimoto G, Hashimoto K, Chiba S (1988) Beta adrenoceptors in the canine large coronary arteries: beta-1 adrenoceptors predominate in vasodilation. J Pharmacol Exp Ther 245:936–943

    CAS  PubMed  Google Scholar 

  • Nakazawa T, Kaneko Y, Mori A, Saito M, Sakamoto K, Nakahara T, Ishii K (2007) Attenuation of nitric oxide- and prostaglandin-independent vasodilation of retinal arterioles induced by acetylcholine in streptozotocin-treated rats. Vascular Pharmacol 46:153–159

    Article  CAS  Google Scholar 

  • Nakazawa T, Sato A, Mori A, Saito M, Sakamoto K, Nakahara T, Ishii K (2008) β-adrenoceptor-mediated vasodilation of retinal blood vessels is reduced in streptozotocin-induced diabetic rats. Vascular Pharmacol 49:77–83

    Article  CAS  Google Scholar 

  • O’Donnell SR, Wanstall JC (1981) Demonstration of both beta 1- and beta 2-adrenoceptors mediating relaxation of isolated ring preparations of rat pulmonary artery. Br J Pharmacol 74:547–552

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Donnell SR, Wanstall JC (1984) The classification of beta-adrenoceptors in isolated ring preparations of canine coronary arteries. Br J Pharmacol 81:637–644

    Article  PubMed  PubMed Central  Google Scholar 

  • Pradidarcheep W, Stallen J, Labruyère WT, Dabhoiwala NF, Michel MC, Lamers WH (2009) Lack of specificity of commercially available antisera against muscarinergic and adrenergic receptors. Naunyn Schmiedeberg’s Arch Pharmacol 379:397–402

    Article  CAS  Google Scholar 

  • Purdy RE, Stupecky GL, Coulombe PR (1988) Further evidence for a homogeneous population of beta-1-adrenoceptors in bovine coronary artery. J Pharmacol Exp Ther 245:67–71

    CAS  PubMed  Google Scholar 

  • Satake N, Shibata M, Shibata S (1997) Endothelium- and cytochrome P-450-dependent relaxation induced by isoproterenol in rat aortic rings. Eur J Pharmacol 319:37–41

    Article  CAS  PubMed  Google Scholar 

  • Schmetterer L, Wolzt M (1999) Ocular blood flow and associated functional deviations in diabetic retinopathy. Diabetologia 42:387–405

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi S, Okamura T, Toda N (1997) Beta1-adrenoceptor-mediated relaxation by norepinephrine in dog hepatic arteries. Jpn J Pharmacol 73:101–103

    Article  CAS  PubMed  Google Scholar 

  • Taira N, Yabuuchi Y, Yamashita S (1977) Profile of beta-adrenoceptors in femoral, superior mesenteric and renal vascular beds of dogs. Br J Pharmacol 59:577–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toda N, Okamura T (1990) Beta adrenoceptor subtype in isolated human, monkey and dog epicardial coronary arteries. J Pharmacol Exp Ther 253:518–524

    CAS  PubMed  Google Scholar 

  • Vatner SF, Hintze TH, Macho P (1982) Regulation of large coronary arteries by beta-adrenergic mechanisms in the conscious dog. Circ Res 51:56–66

    Article  CAS  PubMed  Google Scholar 

  • Vatner SF, Knight DR, Hintze TH (1985) Norepinephrine-induced β1-adrenergic peripheral vasodilation in conscious dogs. Am J Phys 249:H49–H56

    CAS  Google Scholar 

  • Vatner DE, Knight DR, Homcy CJ, Vatner SF, Young MA (1986) Subtypes of beta-adrenergic receptors in bovine coronary arteries. Circ Res 59:463–473

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Ji MH, Wang ZY, Zhu W, Yang JJ, Peng YG (2013) Blood pressure reduction induced by low dose of epinephrine via different routes in rats. J Cardiovasc Pharmacol 62:325–328

    Article  CAS  PubMed  Google Scholar 

  • Yabana H, Murata S, Narita H, Shimizu R, Miyagishima T, Takeda M, Nagao T (1993) Selective beta 1-adrenoceptor agonist activity of denopamine and its derivatives in dogs. Biol Pharm Bull 16:471–474

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Shibamoto T, Kurata Y, Kohno H (2011) Effects of β-adrenergic antagonists on anaphylactic hypotension in conscious rats. Eur J Pharmacol 650:303–308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Kitasato University Research Grant for Young Researchers (A.M.), and JSPS KAKENHI (Grant Numbers: 15K08242 A.M., 16K08554 K.I. and 26460103 T.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Nakahara.

Ethics declarations

All experiments were performed in accordance with the Guidelines for Animal Experiments in Kitasato University adopted by the Committee on the Care and Use of Laboratory Animals of Kitasato University and the tenets of the Association for Research in Vision and Ophthalmology (ARVO) statement for the Use of Animals in Ophthalmic and Vision Research.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, A., Sekito, A., Sakamoto, K. et al. Stimulation of β1- and β2-adrenoceptors dilates retinal blood vessels in rats. Naunyn-Schmiedeberg's Arch Pharmacol 390, 527–533 (2017). https://doi.org/10.1007/s00210-017-1349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-017-1349-4

Keywords

Navigation