Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 390, Issue 4, pp 397–408 | Cite as

Vasoactive actions of nitroxyl (HNO) are preserved in resistance arteries in diabetes

  • Marianne Tare
  • Rushita S. R. Kalidindi
  • Kristen J. Bubb
  • Helena C. Parkington
  • Wee-Ming Boon
  • Xiang Li
  • Christopher G. Sobey
  • Grant R. Drummond
  • Rebecca H. Ritchie
  • Barbara K. Kemp-Harper
Original Article


Endothelial dysfunction is a major risk factor for the vascular complications of diabetes. Increased reactive oxygen species (ROS) generation, a hallmark of diabetes, reduces the bioavailability of endothelial vasodilators, including nitric oxide (NO·). The vascular endothelium also produces the one electron reduced and protonated form of NO·, nitroxyl (HNO). Unlike NO·, HNO is resistant to scavenging by superoxide anions (·O2 ). The fate of HNO in resistance arteries in diabetes is unknown. We tested the hypothesis that the vasodilator actions of endogenous and exogenous HNO are preserved in resistance arteries in diabetes. We investigated the actions of HNO in small arteries from the mesenteric and femoral beds as they exhibit marked differences in endothelial vasodilator function following 8 weeks of streptozotocin (STZ)-induced diabetes mellitus. Vascular reactivity was assessed using wire myography and ·O2 generation using lucigenin-enhanced chemiluminescence. The HNO donor, Angeli’s salt, and the NO· donor, DEA/NO, evoked relaxations in both arteries of control rats, and these responses were unaffected by diabetes. Nox2 oxidase expression and ·O2 generation were upregulated in mesenteric, but unchanged, in femoral arteries of diabetic rats. Acetylcholine-induced endothelium-dependent relaxation was impaired in mesenteric but not femoral arteries in diabetes. The HNO scavenger, l-cysteine, reduced this endothelium-dependent relaxation to a similar extent in femoral and mesenteric arteries from control and diabetic animals. In conclusion, HNO and NO· contribute to the NO synthase (NOS)-sensitive component of endothelium-dependent relaxation in mesenteric and femoral arteries. The role of HNO is sustained in diabetes, serving to maintain endothelium-dependent relaxation.


Nitroxyl Nitric oxide Diabetes Endothelium-dependent relaxation Vascular 



This work was supported by a Diabetes Australia Research Trust Grant (# Y13G-KEMB to BKH and MT) and a National Health & Medical Research Council (NHMRC) project grant (# 546087; to MT and HCP). C.G. Sobey, G.R. Drummond and R.H. Ritchie are Senior Research Fellows of the NHMRC.

Compliance with ethical standards

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies using animals were in accordance with the ethical standards of the Monash Animal Research Platform Animal Ethics Subcommittee.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Andrews KL, Irvine JC, Tare M, Apostolopoulos J, Favaloro JL, Triggle CR, Kemp-Harper BK (2009) A role for nitroxyl (HNO) as an endothelium-derived relaxing and hyperpolarizing factor in resistance arteries. Br J Pharmacol 157:540–550. doi: 10.1111/j.1476-5381.2009.00150.x CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andrews KL, Lumsden NG, Farry J, Jefferis AM, Kemp-Harper BK, Chin-Dusting JP (2015) Nitroxyl: a vasodilator of human vessels that is not susceptible to tolerance. Clin Sci 129:179–187. doi: 10.1042/CS20140759 CrossRefPubMedGoogle Scholar
  3. Arnelle DR, Stamler JS (1995) NO+, NO., and NO donation of S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys 318:279–285CrossRefPubMedGoogle Scholar
  4. Baskol G, Gumus K, Oner A, Arda H, Karakucuk S (2008) The role of advanced oxidation protein products and total thiols in diabetic retinopathy. Eur J Ophthalmol 18:792–798PubMedGoogle Scholar
  5. Beckman JS, Ye YZ, Chen J, Conger KA (1996) The interactions of nitric oxide with oxygen radicals and scavengers in cerebral ischemic injury. Adv Neurol 71:339–350, discussion 350-334PubMedGoogle Scholar
  6. Bermejo E, Saenz DA, Alberto F, Rosenstein RE, Bari SE, Lazzari MA (2005) Effect of nitroxyl on human platelets function. Thromb Haemost 94:578–584. doi: 10.1160/TH05-01-0062 PubMedGoogle Scholar
  7. Botden IP, Batenburg WW, de Vries R, Langendonk JG, Sijbrands EJ, Danser AH (2012) Nitrite- and nitroxyl-induced relaxation in porcine coronary (micro-) arteries: underlying mechanisms and role as endothelium-derived hyperpolarizing factor(s). Pharmacol Res 66:409–418. doi: 10.1016/j.phrs.2012.07.006 CrossRefPubMedGoogle Scholar
  8. Bullen ML, Miller AA, Andrews KL, Irvine J, Ritchie RH, Sobey C, Kemp-Harper B (2011a) Nitroxyl (HNO) as a vasoprotective signaling molecule. Antioxid Redox Signal 14:1675–1686. doi: 10.1089/ars.2010.3327 CrossRefPubMedGoogle Scholar
  9. Bullen ML, Miller AA, Dharmarajah J, Drummond GR, Sobey CG, Kemp-Harper BK (2011b) Vasorelaxant and antiaggregatory actions of the nitroxyl donor isopropylamine NONOate are maintained in hypercholesterolemia. Am J Physiol Heart Circ Physiol 301:H1405–H1414. doi: 10.1152/ajpheart.00489.2011 CrossRefPubMedGoogle Scholar
  10. Crijns FR, Wolffenbuttel BH, De Mey JG, Struijker Boudier HA (1999) Mechanical properties of mesenteric arteries in diabetic rats: consequences of outward remodeling. Am J Phys 276:H1672–H1677Google Scholar
  11. Dautov RF, Ngo DT, Licari G, Sverdlov AL, Ritchie RH, Kemp-Harper BK, Horowitz JD, Chirkov YY (2013) The nitric oxide redox sibling nitroxyl partially circumvents impairment of platelet nitric oxide responsiveness. Nitric Oxide 35:72–78Google Scholar
  12. De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM (2000) Endothelial dysfunction in diabetes. Br J Pharmacol 130:963–974. doi: 10.1038/sj.bjp.0703393 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Delbin MA, Davel AP, Couto GK, de Araujo GG, Rossoni LV, Antunes E, Zanesco A (2012) Interaction between advanced glycation end products formation and vascular responses in femoral and coronary arteries from exercised diabetic rats. PLoS ONE 7:e53318. doi: 10.1371/journal.pone.0053318 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dilley RJ, Farrelly CA, Allen TJ, Jandeleit-Dahm K, Cooper ME, Morahan G, Little PJ (2005) Diabetes induces Na/H exchange activity and hypertrophy of rat mesenteric but not basilar arteries. Diabetes Res Clin Pract 70:201–208. doi: 10.1016/j.diabres.2005.03.038 CrossRefPubMedGoogle Scholar
  15. Ding H, Triggle CR (2010) Endothelial dysfunction in diabetes: multiple targets for treatment. Pflugers Arch 459:977–994. doi: 10.1007/s00424-010-0807-3 CrossRefPubMedGoogle Scholar
  16. Ellis A, Li CG, Rand MJ (2000) Differential actions of L-cysteine on responses to nitric oxide, nitroxyl anions and EDRF in the rat aorta. Br J Pharmacol 129:315–322CrossRefPubMedPubMedCentralGoogle Scholar
  17. Favaloro JL, Kemp-Harper BK (2007) The nitroxyl anion (HNO) is a potent dilator of rat coronary vasculature. Cardiovasc Res 73:587–596. doi: 10.1016/j.cardiores.2006.11.018 CrossRefPubMedGoogle Scholar
  18. Ferrero R, Rodriguez-Pascual F, Miras-Portugal MT, Torres M (2000) Nitric oxide-sensitive guanylyl cyclase activity inhibition through cyclic GMP-dependent dephosphorylation. J Neurochem 75:2029–2039CrossRefPubMedGoogle Scholar
  19. Fitzgerald SM, Kemp-Harper BK, Tare M, Parkington HC (2005) Role of endothelium-derived hyperpolarizing factor in endothelial dysfunction during diabetes. Clin Exp Pharmacol Physiol 32:482–487. doi: 10.1111/j.1440-1681.2005.04216.x CrossRefPubMedGoogle Scholar
  20. Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diabetes 26:77–82CrossRefGoogle Scholar
  21. Gryglewski RJ, Palmer RM, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454–456. doi: 10.1038/320454a0 CrossRefPubMedGoogle Scholar
  22. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88:E14–E22Google Scholar
  23. Hobbs AJ, Fukuto JM, Ignarro LJ (1994) Formation of free nitric oxide from L-arginine by nitric oxide synthase: direct enhancement of generation by superoxide dismutase. Proc Natl Acad Sci U S A 91:10992–10996CrossRefPubMedPubMedCentralGoogle Scholar
  24. Irvine J, Kemp-Harper BK, Widdop RE (2011) Chronic administration of the HNO donor, Angeli’s salt does not lead to tolerance, cross-tolerance or endothelial dysfunction: comparison with GTN and DEA/NO. Antioxid Redox Signal 14:1615–1624. doi: 10.1089/ars.2010.3269 CrossRefPubMedGoogle Scholar
  25. Irvine JC, Favaloro JL, Kemp-Harper BK (2003) NO- activates soluble guanylate cyclase and Kv channels to vasodilate resistance arteries. Hypertension 41:1301–1307. doi: 10.1161/01.HYP.0000072010 CrossRefPubMedGoogle Scholar
  26. Irvine JC, Favaloro JL, Widdop RE, Kemp-Harper BK (2007) Nitroxyl anion donor, Angeli’s salt, does not develop tolerance in rat isolated aortae. Hypertension 49:885–892. doi: 10.1161/01.HYP.0000259328.04159.90 CrossRefPubMedGoogle Scholar
  27. Irvine JC, Ravi RM, Kemp-Harper BK, Widdop RE (2013) Nitroxyl donors retain their depressor effects in hypertension. Am J Physiol Heart Circ Physiol 305:H939–H945CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jelinic M, Leo CH, Post Uiterweer ED, Sandow SL, Gooi JH, Wlodek ME, Conrad KP, Parkington H, Tare M, Parry LJ (2014) Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment. FASEB J 28:275–287. doi: 10.1096/fj.13-233429
  29. Keefer LK (2003) Progress toward clinical application of the nitric oxide-releasing diazeniumdiolates. Annu Rev Pharmacol Toxicol 43:585–607. doi: 10.1146/annurev.pharmtox.43 CrossRefPubMedGoogle Scholar
  30. Laakso M (1999) Hyperglycemia as a risk factor for cardiovascular disease in type 2 diabetes. Primary Care 26:829–839CrossRefPubMedGoogle Scholar
  31. Leo CH, Hart JL, Woodman OL (2011) Impairment of both nitric oxide-mediated and EDHF-type relaxation in small mesenteric arteries from rats with streptozotocin-induced diabetes. Br J Pharmacol 162:365–377. doi: 10.1111/j.1476-5381.2010.01023.x CrossRefPubMedPubMedCentralGoogle Scholar
  32. Leo CH, Joshi A, Hart JL, Woodman OL (2012) Endothelium-dependent nitroxyl-mediated relaxation is resistant to superoxide anion scavenging and preserved in diabetic rat aorta. Pharmacol Res 66:383–391. doi: 10.1016/j.phrs.2012.07.010 CrossRefPubMedGoogle Scholar
  33. Li CG, Rand MJ (1993) Effects of hydroxocobalamin and haemoglobin on no-mediated relaxations in the rat anococcygeus muscle. Clin Exp Pharmacol Physiol 20:633–640CrossRefPubMedGoogle Scholar
  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 25:402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  35. Makino A, Ohuchi K, Kamata K (2000) Mechanisms underlying the attenuation of endothelium-dependent vasodilatation in the mesenteric arterial bed of the streptozotocin-induced diabetic rat. Br J Pharmacol 130:549–556. doi: 10.1038/sj.bjp.0703354 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Miller TW, Cherney MM, Lee AJ, Francoleon NE, Farmer PJ, King SB, Hobbs AJ, Miranda KM, Burstyn JN, Fukuto JM (2009) The effects of nitroxyl (HNO) on soluble guanylate cyclase activity: interactions at ferrous heme and cysteine thiols. J Biol Chem 284:21788–21796Google Scholar
  37. Miller AA, Maxwell KF, Bullen ML, Ku JM, De Silva TM, Selemidis S, Hooker EU, Drummond GR, Sobey CG, Kemp-Harper BK (2013) Nitroxyl (HNO) suppresses vascular Nox2 oxidase activity. Free Radic Biol Med 60:264–271CrossRefPubMedGoogle Scholar
  38. Miranda KM, Yamada K, Espey MG, Thomas DD, DeGraff W, Mitchell JB, Krishna MC, Colton CA, Wink DA (2002) Further evidence for distinct reactive intermediates from nitroxyl and peroxynitrite: effects of buffer composition on the chemistry of Angeli’s salt and synthetic peroxynitrite. Arch Biochem Biophys 401:134–144. doi: 10.1016/S0003-9861(02)00031-0
  39. Moncada S, Rees DD, Schulz R, Palmer RM (1991) Development and mechanism of a specific supersensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthesis in vivo. Proc Natl Acad Sci U S A 88:2166–2170CrossRefPubMedPubMedCentralGoogle Scholar
  40. Oppermann M, Suvorava T, Freudenberger T, Dao VT, Fischer JW, Weber M, Kojda G (2011) Regulation of vascular guanylyl cyclase by endothelial nitric oxide-dependent posttranslational modification. Basic Res Cardiol 106:539–549. doi: 10.1007/s00395-011-0160-5 CrossRefPubMedGoogle Scholar
  41. Pagliaro P (2003) Differential biological effects of products of nitric oxide (NO) synthase: it is not enough to say NO. Life Sci 73:2137–2149CrossRefPubMedGoogle Scholar
  42. Paolocci N, Biondi R, Bettini M, Lee CI, Berlowitz CO, Rossi R, Xia Y, Ambrosio G, L'Abbate A, Kass DA, Zweier JL (2001) Oxygen radical-mediated reduction in basal and agonist-evoked NO release in isolated rat heart. J Mol Cell Cardiol 33:671–679Google Scholar
  43. Pino RZ, Feelisch M (1994) Bioassay discrimination between nitric oxide (NO.) and nitroxyl (NO-) using L-cysteine. Biochem Biophys Res Commun 201:54–62. doi: 10.1006/bbrc.1994.1668 CrossRefPubMedGoogle Scholar
  44. Preis SR, Hwang SJ, Coady S, Pencina MJ, D'Agostino RB, Sr., Savage PJ, Levy D, Fox CS (2009) Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation 119:1728–1735. doi: 10.1161/CIRCULATIONAHA.108.829176
  45. Pufahl RA, Wishnok JS, Marletta MA (1995) Hydrogen peroxide-supported oxidation of NG-hydroxy-L-arginine by nitric oxide synthase. Biochemistry 34:1930–1941CrossRefPubMedGoogle Scholar
  46. Rusche KM, Spiering MM, Marletta MA (1998) Reactions catalyzed by tetrahydrobiopterin-free nitric oxide synthase. Biochemistry 37:15503–15512CrossRefPubMedGoogle Scholar
  47. Sayed N, Baskaran P, Ma X, van den Akker F, Beuve A (2007) Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc Natl Acad Sci U S A 104:12312–12317. doi: 10.1073/pnas.0703944104 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Schmidt HH, Hoffman MD, Schindler U, Shutenko ZS, Cunningham DD, Feelisch M (1996) No.NO from NO synthase. Proc Natl Acad Sci U S A 93:14492–14497CrossRefPubMedPubMedCentralGoogle Scholar
  49. Serizawa K, Yogo K, Aizawa K, Tashiro Y, Ishizuka N (2011) Nicorandil prevents endothelial dysfunction due to antioxidative effects via normalisation of NADPH oxidase and nitric oxide synthase in streptozotocin diabetic rats. Cardiovasc Diabetol 10:105. doi: 10.1186/1475-2840-10-105 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shi Y, Ku DD, Man RY, Vanhoutte PM (2006) Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats. J Pharmacol Exp Ther 318:276–281. doi: 10.1124/jpet.105.099739 CrossRefPubMedGoogle Scholar
  51. Taniwaki H, Shoji T, Emoto M, Kawagishi T, Ishimura E, Inaba M, Okuno Y, Nishizawa Y (2001) Femoral artery wall thickness and stiffness in evaluation of peripheral vascular disease in type 2 diabetes mellitus. Atherosclerosis 158:207–214Google Scholar
  52. Vanhoutte PM, Shimokawa H, Tang EH, Feletou M (2009) Endothelial dysfunction and vascular disease. Acta Physiol 196:193–222. doi: 10.1111/j.1748-1716.2009.01964.x CrossRefGoogle Scholar
  53. Wanstall JC, Homer KL, Doggrell SA (2005) Evidence for, and importance of, cGMP-independent mechanisms with NO and NO donors on blood vessels and platelets. Curr Vasc Pharmacol 3:41–53CrossRefPubMedGoogle Scholar
  54. Wanstall JC, Jeffery TK, Gambino A, Lovren F, Triggle CR (2001) Vascular smooth muscle relaxation mediated by nitric oxide donors: a comparison with acetylcholine, nitric oxide and nitroxyl ion. Br J Pharmacol 134:463–472. doi: 10.1038/sj.bjp.0704269 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wigg SJ, Tare M, Tonta MA, O’Brien RC, Meredith IT, Parkington HC (2001) Comparison of effects of diabetes mellitus on an EDHF-dependent and an EDHF-independent artery. Am J Physiol Heart Circ Physiol 281:H232–H240PubMedGoogle Scholar
  56. Wong P, Hyun J, Fukuto JM, Shirota FN, DeMaster EG, Shoeman DW, Nagasawa HT (1998) Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry. Biochemistry 37:5362–5371CrossRefPubMedGoogle Scholar
  57. Wynne BM, Labazi H, Tostes RC, Webb RC (2012) Aorta from angiotensin II hypertensive mice exhibit preserved nitroxyl anion mediated relaxation responses. Pharmacol Res 65:41–47. doi: 10.1016/j.phrs.2011.07.002 CrossRefPubMedGoogle Scholar
  58. Yuill KH, Yarova P, Kemp-Harper BK, Garland CJ, Dora KA (2011) A novel role for HNO in local and spreading vasodilatation in rat mesenteric resistance arteries. Antioxid Redox Signal 14:1625–1635. doi: 10.1089/ars.2010.3279

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Marianne Tare
    • 1
    • 2
  • Rushita S. R. Kalidindi
    • 3
  • Kristen J. Bubb
    • 1
    • 4
  • Helena C. Parkington
    • 1
  • Wee-Ming Boon
    • 1
  • Xiang Li
    • 1
  • Christopher G. Sobey
    • 3
  • Grant R. Drummond
    • 3
  • Rebecca H. Ritchie
    • 5
    • 6
  • Barbara K. Kemp-Harper
    • 3
  1. 1.Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of PhysiologyMonash UniversityMelbourneAustralia
  2. 2.Monash Rural HealthMonash UniversityChurchillAustralia
  3. 3.Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of PharmacologyMonash UniversityMelbourneAustralia
  4. 4.Kolling InstituteRoyal North Shore HospitalSt LeonardsAustralia
  5. 5.Baker IDI Heart and Diabetes InstituteMelbourneAustralia
  6. 6.Department of Medicine, Central Clinical SchoolMonash UniversityMelbourneAustralia

Personalised recommendations