The disintegrin, trimucrin, suppresses LPS-induced activation of phagocytes primarily through blockade of NF-κB and MAPK activation

  • Yu-Chun Hung
  • Chun-Chieh Hsu
  • Ching-Hu Chung
  • Tur-Fu Huang
Original Article


In addition to antiplatelet activity, disintegrin, a small-mass RGD-containing polypeptide, has been shown to exert anti-inflammatory effects but the mechanism involved remains unclear. In this study, we report that trimucrin, a disintegrin from the venom of Trimeresurus mucrosquamatus, inhibits lipopolysaccharide (LPS)-induced stimulation of THP-1 and RAW 264.7 cells. We also investigate the underlying mechanism. Trimucrin decreased the release of proinflammatory cytokines including tumor necrosis factor α (TNFα), interleukin-6 (IL-6), nitric oxide, and reactive oxygen species (ROS), and inhibited the adhesion and migration of LPS-activated phagocytes. Trimucrin significantly blocked the expression of nuclear factor kappaB (NF-κB)-related downstream inducible enzymes such as inducible nitric oxide synthase (iNOS) and COX-2. In addition, its anti-inflammatory effect was associated with the decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, trimucrin concentration dependently inhibited LPS-induced phosphorylation of focal adhesion kinase (FAK), PI3K, and Akt. Trimucrin also reversed the DNA-binding activity of NF-κB by suppressing the LPS-induced nuclear translocation of p65 and the cytosolic IκB release. Flow cytometric analyses showed that trimucrin bound to cells in a concentration-dependent manner. The anti-αVβ3 mAb also specifically decreased the binding of fluorescein isothiocyanate (FITC)-conjugated trimucrin. Binding assays demonstrated that integrin αVβ3 was the binding site for trimucrin on THP-1 and RAW 264.7 cells. In conclusion, we showed that trimucrin decreases the inflammatory reaction through the attenuation of iNOS expression and nitric oxide (NO) production by blocking MAP kinase and the NF-κB activation in LPS-stimulated THP-1 and RAW 264.7 cells.


Snake venom disintegrin Phagocyte Integrin αVβ3 LPS Signaling transduction 



This work was supported by the Ministry of Science and Technology grant, MOST104-2321-B002-035, Taiwan.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Antonov AS, Antonova GN, Munn DH, Mivechi N (2011) Alpha V beta 3 integrin regulates macrophage inflammatory responses via PI3 Kinase/Akt-dependent NF-kappa B activation. J Cell Physiol 226:469–476CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ardeshna KM, Pizzey AR, Devereux S, Khwaja A (2000) The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 96:1039–1046PubMedGoogle Scholar
  3. Arner EC, Tortorella MD (1995) Signal transduction through chondrocyte integrin receptors induces matrix metalloproteinase synthesis and synergises with interleukin-1. Arthritis Rheum 38:1304–1314CrossRefPubMedGoogle Scholar
  4. Barja-Fidalgo C, Coelho AL, Saldanha-Gama R, Helal-Neto E, Mariano-Oliveira A, Freitas MS (2005) Disintegrins: integrin selective ligands which activate integrin-coupled signaling and modulate leukocyte functions. Braz J Med Biol Res 38:1513–1520CrossRefPubMedGoogle Scholar
  5. Bedke J, Kiss E, Behnes CL, Popovic ZV, Heuser M, Stojanovic T, Sijmonsma T, Huber P, Domhan S, Muschal S, Abdollahi A, Gretz N, Grone HJ (2007) Anti-inflammatory effects of alphav integrin antagonism in acute kidney allograft rejection. Am J Pathol 171:1127–1139CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bertolini A, Ottani A, Sandrini M (2002) Selective COX-2 inhibitors and dual acting anti-inflammatory drugs: critical remarks. Curr Med Chem 9:1033–1043CrossRefPubMedGoogle Scholar
  7. Bhattacharyya A, Pathak S, Datta S, Chattopadhyay S, Basu J, Kundu M (2002) Mitogen-activated protein kinases and nuclear factorkappa B regulate Helicobacter pylori-mediated interleukin-8 release from macrophages. Biochem J 368:121–129CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen BC, Chen YH, Lin WW (1999) Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced NOS 2 and COX-2 expression in J774 macrophages. Immunology 97:124–129CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen HC, Appeddu PA, Isoda H, Guan JL (1996) Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem 271:26329–26334CrossRefPubMedGoogle Scholar
  10. Chetty C, Lakka SS, Bhoopathi P, Rao JS (2009) MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells. Int J Cancer 124:2468–2477CrossRefPubMedPubMedCentralGoogle Scholar
  11. Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268:233–239CrossRefPubMedGoogle Scholar
  12. Coelho AL, De Freitas MS, Mariano-Oliveira A, Oliveira-Carvalho AL, Zingali RB, Barja-Fidalgo C (2001) Interaction of disintegrins with human neutrophils induces cytoskeleton reorganization, focal adhesion kinase activation, and extracellular-regulated kinase-2 nuclear translocation, interfering with the chemotactic function. FASEB J 15:1643–1645PubMedGoogle Scholar
  13. Coelho AL, De Freitas MS, Mariano-Oliveira A, Rapozo DC, Pinto LF, Niewiarowski S, Zingali RB, Marcinkiewicz C, Barja-Fidalgo C (2004) RGD- and MLD-disintegrins, jarastatin and EC3, activate integrinmediated signaling modulating the human neutrophils chemotaxis, apoptosis and IL-8 gene expression. Exp Cell Res 292:371–384CrossRefPubMedGoogle Scholar
  14. Furundzija V, Fritzsche J, Kaufmann J, Meyborg H (2010) IGF-1 increases macrophage motility via PKC/p38-dependent alphavbeta3-integrin inside-out signaling. Biochem Biophys Res Commun 394:786–791CrossRefPubMedGoogle Scholar
  15. Gerold G, Ajaj KA, Bienert M, Laws HJ, Zychlinsky A, de Diego JL (2008) A toll-like receptor 2-integrin beta3 complex senses bacterial lipopeptides via vitronectin. Nat Immunol 9:761–768CrossRefPubMedGoogle Scholar
  16. Guha M, O'Connell MA, Pawlinski R, Hollis A, McGovern P, Yan SF, Stern D, Mackman N (2001) Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression.Blood 98:1429–1439Google Scholar
  17. Guo H, Cai CQ, Schroeder RA, Kuo PC (2001) Osteopontin is a negative feedback regulator of nitric oxide synthesis in murine macrophages. J Immunol 166:1079–1086CrossRefPubMedGoogle Scholar
  18. Harburger DS, Calderwood DA (2009) Integrin signaling at a glance. J Cell Sci 122:159–163CrossRefPubMedGoogle Scholar
  19. Hernández-Ledesma B, Hsieh CC, de Lumen BO (2009) Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem Biophys Res Commun 390:803–808Google Scholar
  20. Howell KW, Meng X, Fullerton DA, Jin C, Reece TB, JC C Jr (2011) Toll-like receptor 4 mediates oxidized LDL-induced macrophage differentiation to foam cells. J Surg Res 171:E27–E31CrossRefPubMedGoogle Scholar
  21. Hsu CC, Chuang WJ, Chang CH, Tseng YL, Peng HC, Huang TF (2011) Improvements in endotoxemic syndromes using a disintegrin, rhodostomin, through integrin gesgnalinguman neutrop. J Thromb Haemost 9:593–602CrossRefPubMedGoogle Scholar
  22. Huang TF (1998) What have snakes taught us about integrins? Cell Mol Life Sci 54:527–540CrossRefPubMedGoogle Scholar
  23. Huang TF, Holt CJ, Lukasiewicz H, Niewiarowski S (1987) Trigramin: a low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J Biol Chem 262:16157–16163PubMedGoogle Scholar
  24. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687CrossRefPubMedGoogle Scholar
  25. Kim JH, Kim DH, Baek SH, Lee HJ, Kim MR, Kwon HJ, Lee CH (2006) Rengyolone inhibits inducible nitric oxide synthase expression and nitric oxide production by down-regulation of NFkappaB and p38 MAP kinase activity in LPS-stimulated RAW 264.7 cells. Biochem Pharmacol 71:1198–1205CrossRefPubMedGoogle Scholar
  26. Kuphal S, Bauer R, Bosserhoff AK (2005) Integrin signaling in malignant melanoma. Cancer Metastasis Rev 24:195–222CrossRefPubMedGoogle Scholar
  27. Lacy-Hulbert A, Ueno T, Ito T, Jurewicz M, Izawa A, Smith RN, Chase CM, Tanaka K, Fiorina P, Russell PS, Auchincloss H Jr, Sayegh MH, Hynes RO, Abdi R (2007) Beta 3 integrins regulate lymphocyte migration and cytokine responses in heart transplant rejection. Am J Transplant 7:1080–1090CrossRefPubMedGoogle Scholar
  28. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2phoc- dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231CrossRefPubMedGoogle Scholar
  29. Lee CY, Huang CY, Chen MY, Lin CY, Hsu HC, Tang CH (2011) IL-8 increases integrin expression and cell motility in human chondrosarcoma cells. J Cell Biochem 112:2549–2557CrossRefPubMedGoogle Scholar
  30. Lee HS, Moon C, Lee HW, Park EM, Cho MS, Kang JL (2007) Src tyrosine kinases mediate activations of NF-kappaB and integrin signal during lipopolysaccharide-induced acute lung injury. J Immunol 179:7001–7011CrossRefPubMedGoogle Scholar
  31. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689CrossRefPubMedGoogle Scholar
  32. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734CrossRefPubMedGoogle Scholar
  33. Liu CZ, Hur BT, Huang TF (1996) Measurement of glycoprotein IIb-IIIa blocked by flow cytometry with fluorescein isothiocyanate-conjugated crotavirin, a member of disintegrin. Thromb Haemost 76:585–591PubMedGoogle Scholar
  34. Mancuso G, Midiri A, Beninati C, Piraino G, Valent A, Nicocia G, Teti D, Cook J, Teti G (2002) Mitogen-activated protein kinases and NFkappa B are involved in TNFalpha responses to group B streptococci. J Immunol 169:1401–1409CrossRefPubMedGoogle Scholar
  35. Marcinkiewicz C, Taooka Y, Yokosaki Y, Calvete JJ, Marcinkiewicz MM, Lobb RR, Niewiarowski S, Sheppard D (2000) Inhibitory effects of MLDG-containing heterodimeric disintegrins reveal distinct structural requirements for interaction of the integrin alpha 9beta 1 with VCAM-1, tenascin-C, and osteopontin. J Biol Chem 275:31930–31937CrossRefPubMedGoogle Scholar
  36. Moon C, Han JR, Park HJ, Hah JS, Kang JL (2009) Synthetic RGDS peptide attenuates lipopolysaccharide-induced pulmonary inflammation by inhibiting integrin signaled MAP kinase pathways. Respir Res 10:1–18CrossRefGoogle Scholar
  37. Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78:915–918CrossRefPubMedGoogle Scholar
  38. Parente L, Perretti M (2003) Advances in the pathophysiology of constitutive and inducible cyclooxygenases: two enzymes in the spotlight. Biochem Pharmacol 65:153–159Google Scholar
  39. Perera PY, Mayadas TN, Takeuchi O, Akira S, Zaks-Zilberman M, Goyert SM, Vogel SN (2001) CD11b/CD18 acts in concert with CD14 and Toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and taxol inducible gene expression. J Immunol 166:574–581CrossRefPubMedGoogle Scholar
  40. Saegusa J, Akakura N, Wu CY, Hoogland C, Ma Z, Lam KS, Liu FT, Takada YK, Takada Y (2008) Pro-inflammatory secretory phospholipase A2 type IIA binds to integrins alphavbeta3 and alpha4beta1 and induces proliferation of monocytic cells in an integrin-dependent manner. J Biol Chem 283:26107–26115Google Scholar
  41. Schmedtje JF, Ji YS, Liu WL, DuBois RN, Runge MS (1997) Hypoxia induces cyclooxygenase-2 via the NF-l-like receptor (TLR) 4 to elicit full lipopolysaccharide and t. J Biol Chem 272:601–608CrossRefPubMedGoogle Scholar
  42. Scholtes VP, Versteeg D, de Vriest JPM, Hoefer IE (2011) Toll-like receptor 2 and 4 stimulation elicits an enhanced inflammatory response in human obese patients with atherosclerosis. Clin Sci 121:205–214CrossRefPubMedGoogle Scholar
  43. Singh B, Janardhan KS, Kanthan R (2005) Expression of angiostatin, integrin alphavbeta3, and vitronectin in human lungs in sepsis. Exp Lung Res 31:771–782CrossRefPubMedGoogle Scholar
  44. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappaB activation. Mutat Res 480-481:243–268CrossRefPubMedGoogle Scholar
  45. Tsai IH, Wang YM, Lee YH (1994) Characterization of a cDNA encoding the precursor of platelet aggregation inhibitor and metalloproteinase from Trimeresurus mucrosquamatus venom. Biochimica Biophysica Acta 1200:337–340CrossRefGoogle Scholar
  46. Tseng YL, Peng HC, Huang TF (2004) Rhodostomin, a disintegrin, inhibits adhesion of neutrophils to fibrinogen and attenuates superoxide production. J Biomed Sci 11:683–691CrossRefPubMedGoogle Scholar
  47. Uwe S (2008) Anti-inflammatory interventions of NF-dhesion of neutrophils to fibrinogen and atten. Biochem Pharmacol 75:1567–1579CrossRefPubMedGoogle Scholar
  48. Yeh CH, Peng HC, Yang RS, Huang TF (2001) Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v) beta(3) blockade of endothelial cells. Mol Pharmacol 59:1333–1342PubMedGoogle Scholar
  49. Yeh YY, Chiao CC, Kuo WY, Hsiao YC, Chen YJ, Wei YY, Lai TH, Fong YC, Tang CH (2008) TGF-beta1 increases motility and alphavbeta3 integrin up-regulation via PI3K, Akt and NFkappaB-dependent pathway in human chondrosarcoma cells. Biochem Pharmacol 75:1292–1301CrossRefPubMedGoogle Scholar
  50. Yen YT, Liao F, Hsiao CH, Kao CL, Chen YC, Wu-Hsieh BA (2006) Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J Virol 80:2684–2693CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yu-Chun Hung
    • 1
  • Chun-Chieh Hsu
    • 1
  • Ching-Hu Chung
    • 2
  • Tur-Fu Huang
    • 1
  1. 1.Graduate Institute of Pharmacology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Medicine, Mackay Medical CollegeNew TaipeiTaiwan

Personalised recommendations