Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 387, Issue 2, pp 175–184 | Cite as

Evaluation of the specificity of antibodies raised against cannabinoid receptor type 2 in the mouse retina

  • Bruno Cécyre
  • Sébastien Thomas
  • Maurice Ptito
  • Christian Casanova
  • Jean-François Bouchard
Original Article

Abstract

Cannabinoid receptors (CB1R and CB2R) are among the most abundant G protein-coupled receptors in the central nervous system. The endocannabinoid system is an attractive therapeutic target for immune system modulation and peripheral pain management. While CB1R is distributed in the nervous system, CB2R has traditionally been associated to the immune system. This dogma is currently a subject of debate since the discovery of CB2R expression in neurons using antibody-based methods. The localization of CB2R in the central nervous system (CNS) could have a significant impact on drug development because it would mean that in addition to its effects on the peripheral pain pathway, CB2R could also mediate some central effects of cannabinoids. In an attempt to clarify the debate over CB2R expression in the CNS, we tested several commercially or academically produced CB2R antibodies using Western blot and immunohistochemistry on retinal tissue obtained from wild-type mice and mice lacking CB2R (cnr2−/−). One of the antibodies tested exhibited a valuable specificity as it marked a single band near the predicted molecular weight in Western blot and produced no staining in cnr2−/− mice retina sections. The other antibodies tested detected multiple bands in Western blot and labeled unidentified proteins when used with their immunizing peptide or on cnr2−/− retinal sections. We conclude that many commonly used antibodies raised against CB2R are not specific for use in immunohistochemistry, at least in the context of the mouse retina. Moreover, some of them tested presented significant lot-to-lot variability. Hence, caution should be used when interpreting prior and future studies using CB2R antibodies.

Keywords

CB2R Antibodies CNS Knockout Specificity Retina 

Notes

Acknowledgments

We would like to thank Dr. Ken Mackie for kindly providing the CB2R antibodies and the constructive comments on this manuscript. This work was supported by a NSERC grant (194670–2009) to C.C., a CIHR grant (MOP 177796), and a NSERC grant (311892–2010) to J.-F.B. B.C. was supported by a Réseau Fonds de recherche Québec-Santé (FQRS) de recherche en santé de la vision studentship and J.-F.B. by a Chercheur-Boursier Junior 2 from the FRQS.

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New YorkGoogle Scholar
  2. Ashton JC (2012) The use of knockout mice to test the specificity of antibodies for cannabinoid receptors. Hippocampus 22:643–644PubMedCrossRefGoogle Scholar
  3. Ashton JC, Friberg D, Darlington CL, Smith PF (2006) Expression of the cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study. Neurosci Lett 396:113–116PubMedCrossRefGoogle Scholar
  4. Atwood BK, Mackie K (2010) CB2: a cannabinoid receptor with an identity crisis. Br J Pharmacol 160:467–479PubMedCrossRefGoogle Scholar
  5. Baek JH, Darlington CL, Smith PF, Ashton JC (2013) Antibody testing for brain immunohistochemistry: brain immunolabeling for the cannabinoid CB2 receptor. J Neurosci Methods 216:87–95PubMedCrossRefGoogle Scholar
  6. Barutta F, Piscitelli F, Pinach S, Bruno G, Gambino R, Rastaldi MP, Salvidio G, Di Marzo V, Cavallo Perin P, Gruden G (2011) Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy. Diabetes 60:2386–2396PubMedCrossRefGoogle Scholar
  7. Beermann S, Seifert R, Neumann D (2012) Commercially available antibodies against human and murine histamine H(4)-receptor lack specificity. Naunyn Schmiedebergs Arch Pharmacol 385:125–135PubMedCrossRefGoogle Scholar
  8. Benito C, Kim WK, Chavarria I, Hillard CJ, Mackie K, Tolon RM, Williams K, Romero J (2005) A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis. J Neurosci 25:2530–2536PubMedCrossRefGoogle Scholar
  9. Bodei S, Arrighi N, Spano P, Sigala S (2009) Should we be cautious on the use of commercially available antibodies to dopamine receptors? Naunyn Schmiedebergs Arch Pharmacol 379:413–415PubMedCrossRefGoogle Scholar
  10. Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J, Anagnostou V, Rimm D (2010) Antibody validation. BioTechniques 48:197–209PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bouskila J, Javadi P, Casanova C, Ptito M, Bouchard JF (2013) Muller cells express the cannabinoid CB2 receptor in the vervet monkey retina. J Comp Neurol 521:2399–2415PubMedCrossRefGoogle Scholar
  12. Brown D, Lydon J, McLaughlin M, Stuart-Tilley A, Tyszkowski R, Alper S (1996) Antigen retrieval in cryostat tissue sections and cultured cells by treatment with sodium dodecyl sulfate (SDS). Histochemistry Cell Biol 105:261–267CrossRefGoogle Scholar
  13. Brown SM, Wager-Miller J, Mackie K (2002) Cloning and molecular characterization of the rat CB2 cannabinoid receptor. Biochim Biophys Acta 1576:255–264PubMedCrossRefGoogle Scholar
  14. Brusco A, Tagliaferro P, Saez T, Onaivi E (2008) Postsynaptic localization of CB2 cannabinoid receptors in the rat hippocampus. Synapse (New York, NY) 62:944–949CrossRefGoogle Scholar
  15. Buckley NE, McCoy KL, Mezey E, Bonner T, Zimmer A, Felder CC, Glass M, Zimmer A (2000) Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor. Eur J Pharmacol 396:141–149PubMedCrossRefGoogle Scholar
  16. Cernecka H, Ochodnicky P, Lamers WH, Michel MC (2012) Specificity evaluation of antibodies against human beta3-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol 385:875–882PubMedCrossRefGoogle Scholar
  17. Cox ML, Haller VL, Welch SP (2007) The antinociceptive effect of Delta9-tetrahydrocannabinol in the arthritic rat involves the CB(2) cannabinoid receptor. Eur J Pharmacol 570:50–56PubMedCrossRefGoogle Scholar
  18. de Sousa AR, Penalva LO, Marcotte EM, Vogel C (2009) Global signatures of protein and mRNA expression levels. Mol Biosyst 5:1512–1526Google Scholar
  19. den Boon F, Chameau P, Schaafsma-Zhao Q, van Aken W, Bari M, Oddi S, Kruse C, Maccarrone M, Wadman W, Werkman T (2012) Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors. Proc Natl Acad Sci U S A 109:3534–3539CrossRefGoogle Scholar
  20. Fan SF, Yazulla S (2003) Biphasic modulation of voltage-dependent currents of retinal cones by cannabinoid CB1 receptor agonist WIN 55212–2. Vis Neurosci 20:177–188PubMedCrossRefGoogle Scholar
  21. Fan SF, Yazulla S (2007) Retrograde endocannabinoid inhibition of goldfish retinal cones is mediated by 2-arachidonoyl glycerol. Vis Neurosci 24:257–267PubMedCrossRefGoogle Scholar
  22. Filppula S, Yaddanapudi S, Mercier R, Xu W, Pavlopoulos S, Makriyannis A (2004) Purification and mass spectroscopic analysis of human CB2 cannabinoid receptor expressed in the baculovirus system. J Peptide Res: Off J Am Peptide Soc 64:225–236CrossRefGoogle Scholar
  23. Frank SA (2002) Immunology and evolution of infectious disease. Princeton University Press, PrincetonGoogle Scholar
  24. Goldsby R, Kindt TJ, Kuby J, Osbourne BA (2002) Immunology. Freeman, San FranciscoGoogle Scholar
  25. Gong J-P, Onaivi E, Ishiguro H, Liu Q-R, Tagliaferro P, Brusco A, Uhl G (2006) Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res 1071:10–23PubMedCrossRefGoogle Scholar
  26. Grimsey N, Goodfellow C, Scotter E, Dowie M, Glass M, Graham E (2008) Specific detection of CB1 receptors; cannabinoid CB1 receptor antibodies are not all created equal! J Neurosci Methods 171:78–86PubMedCrossRefGoogle Scholar
  27. Hamdani N, van der Velden J (2009) Lack of specificity of antibodies directed against human beta-adrenergic receptors. Naunyn Schmiedebergs Arch Pharmacol 379:403–407PubMedCrossRefGoogle Scholar
  28. Hanly WC, Artwohl JE, Bennett BT (1995) Review of polyclonal antibody production procedures in mammals and poultry. ILAR journal / National Research Council. Inst Lab Anim Resour 37:93–118Google Scholar
  29. Herkenham M, Lynn A, Johnson M, Melvin L, de Costa B, Rice K (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci: Off J Soc Neurosci 11:563–583Google Scholar
  30. Jensen BC, Swigart PM, Simpson PC (2009) Ten commercial antibodies for alpha-1-adrenergic receptor subtypes are nonspecific. Naunyn Schmiedebergs Arch Pharmacol 379:409–412PubMedCentralPubMedCrossRefGoogle Scholar
  31. Liu QR, Pan CH, Hishimoto A, Li CY, Xi ZX, Llorente-Berzal A, Viveros MP, Ishiguro H, Arinami T, Onaivi E, Uhl G (2009) Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes brain behavior 8:519–530CrossRefGoogle Scholar
  32. Lopez EM, Tagliaferro P, Onaivi ES, Lopez-Costa JJ (2011) Distribution of CB2 cannabinoid receptor in adult rat retina. Synapse 65:388–392PubMedCrossRefGoogle Scholar
  33. Lorincz A, Nusser Z (2008) Specificity of immunoreactions: the importance of testing specificity in each method. J Neurosci 28:9083–9086PubMedCentralPubMedCrossRefGoogle Scholar
  34. Lu Q, Straiker A, Lu Q, Maguire G (2000) Expression of CB2 cannabinoid receptor mRNA in adult rat retina. Vis Neurosci 17:91–95PubMedCrossRefGoogle Scholar
  35. Luisier F, Blu T (2008) SURE-LET multichannel image denoising: interscale orthonormal wavelet thresholding. IEEE Trans Image process: Publ IEEE Signal Process Soc 17:482–492CrossRefGoogle Scholar
  36. Merriam FV, Wang ZY, Guerios SD, Bjorling DE (2008) Cannabinoid receptor 2 is increased in acutely and chronically inflamed bladder of rats. Neurosci Lett 445:130–134PubMedCentralPubMedCrossRefGoogle Scholar
  37. Michel M, Wieland T, Tsujimoto G (2009) How reliable are G-protein-coupled receptor antibodies? Naunyn-Schmiedeberg's Arch Pharmacol 379:385–388CrossRefGoogle Scholar
  38. Monory K, Lutz B (2009) Genetic models of the endocannabinoid system. Curr Top Behav Neurosci 1:111–139PubMedCrossRefGoogle Scholar
  39. Munro S, Thomas K, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65PubMedCrossRefGoogle Scholar
  40. Pertwee R, Howlett A, Abood M, Alexander S, Di Marzo V, Elphick M, Greasley P, Hansen H, Kunos G, Mackie K, Mechoulam R, Ross R (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631PubMedCrossRefGoogle Scholar
  41. Pradidarcheep W, Labruyere WT, Dabhoiwala NF, Lamers WH (2008) Lack of specificity of commercially available antisera: better specifications needed. J Histochem Cytochem 56:1099–1111PubMedCrossRefGoogle Scholar
  42. Ramirez SH, Hasko J, Skuba A, Fan S, Dykstra H, McCormick R, Reichenbach N, Krizbai I, Mahadevan A, Zhang M, Tuma R, Son YJ, Persidsky Y (2012) Activation of cannabinoid receptor 2 attenuates leukocyte–endothelial cell interactions and blood–brain barrier dysfunction under inflammatory conditions. J Neurosci 32:4004–4016PubMedCentralPubMedCrossRefGoogle Scholar
  43. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nature methods 9:676–682PubMedCrossRefGoogle Scholar
  44. Schmidt W, Schafer F, Striggow V, Frohlich K, Striggow F (2012) Cannabinoid receptor subtypes 1 and 2 mediate long-lasting neuroprotection and improve motor behavior deficits after transient focal cerebral ischemia. Neuroscience 227:313–326PubMedCrossRefGoogle Scholar
  45. Seifert R, Strasser A, Schneider EH, Neumann D, Dove S, Buschauer A (2013) Molecular and cellular analysis of human histamine receptor subtypes. Trends Pharmacol Sci 34:33–58PubMedCrossRefGoogle Scholar
  46. Shire D, Calandra B, Rinaldi-Carmona M, Oustric D, Pessègue B, Bonnin-Cabanne O, Le Fur G, Caput D, Ferrara P (1996) Molecular cloning, expression and function of the murine CB2 peripheral cannabinoid receptor. Biochimica et biophysica acta 1307:132–136PubMedCrossRefGoogle Scholar
  47. Straiker A, Stella N, Piomelli D, Mackie K, Karten HJ, Maguire G (1999) Cannabinoid CB1 receptors and ligands in vertebrate retina: localization and function of an endogenous signaling system. Proc Natl Acad Sci U S A 96:14565–14570PubMedCentralPubMedCrossRefGoogle Scholar
  48. Straiker A, Sullivan JM (2003) Cannabinoid receptor activation differentially modulates ion channels in photoreceptors of the tiger salamander. J Neurophysiol 89:2647–2654PubMedCrossRefGoogle Scholar
  49. Suárez J, Bermúdez-Silva F, Mackie K, Ledent C, Zimmer A, Cravatt B, de Fonseca F (2008) Immunohistochemical description of the endogenous cannabinoid system in the rat cerebellum and functionally related nuclei. J Comp Neurol 509:400–421PubMedCrossRefGoogle Scholar
  50. Van Sickle M, Duncan M, Kingsley P, Mouihate A, Urbani P, Mackie K, Stella N, Makriyannis A, Piomelli D, Davison J, Marnett L, Di Marzo V, Pittman Q, Patel K, Sharkey K (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science (New York, NY) 310:329–332CrossRefGoogle Scholar
  51. Walczak JS, Pichette V, Leblond F, Desbiens K, Beaulieu P (2005) Behavioral, pharmacological and molecular characterization of the saphenous nerve partial ligation: a new model of neuropathic pain. Neuroscience 132:1093–1102PubMedCrossRefGoogle Scholar
  52. Walczak JS, Pichette V, Leblond F, Desbiens K, Beaulieu P (2006) Characterization of chronic constriction of the saphenous nerve, a model of neuropathic pain in mice showing rapid molecular and electrophysiological changes. J Neurosci Res 83:1310–1322PubMedCrossRefGoogle Scholar
  53. Warrier A, Wilson M (2007) Endocannabinoid signaling regulates spontaneous transmitter release from embryonic retinal amacrine cells. Vis Neurosci 24:25–35PubMedCrossRefGoogle Scholar
  54. Yazulla S (2008) Endocannabinoids in the retina: from marijuana to neuroprotection. Prog Retin Eye Res 27:501–526PubMedCentralPubMedCrossRefGoogle Scholar
  55. Yazulla S, Studholme KM, McIntosh HH, Fan SF (2000) Cannabinoid receptors on goldfish retinal bipolar cells: electron-microscope immunocytochemistry and whole-cell recordings. Vis Neurosci 17:391–401PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bruno Cécyre
    • 1
    • 2
  • Sébastien Thomas
    • 2
  • Maurice Ptito
    • 3
  • Christian Casanova
    • 2
  • Jean-François Bouchard
    • 1
  1. 1.Laboratoire de Neuropharmacologie, École d’optométrieUniversité de MontréalMontrealCanada
  2. 2.Laboratoire des Neurosciences de la vision, École d’optométrieUniversité de MontréalMontrealCanada
  3. 3.Chaire Harland Sanders, École d’optométrieUniversité de MontréalMontrealCanada

Personalised recommendations