Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 386, Issue 12, pp 1021–1030 | Cite as

In vitro and mouse in vivo characterization of the potent free fatty acid 1 receptor agonist TUG-469

  • C. Urban
  • A. Hamacher
  • H. J. Partke
  • M. Roden
  • S. Schinner
  • E. Christiansen
  • M. E. Due-Hansen
  • T. Ulven
  • H. Gohlke
  • M. U. KassackEmail author
Original Article

Abstract

Activation of the G protein-coupled free fatty acid receptor 1 (FFA1; formerly known as GPR40) leads to an enhancement of glucose-stimulated insulin secretion from pancreatic β-cells. TUG-469 has previously been reported as a potent FFA1 agonist. This study was performed to confirm the higher in vitro potency of TUG-469 compared to the reference FFA1 agonist GW9508 and to prove in vivo activity in a pre-diabetic mouse model. The in vitro pharmacology of TUG-469 was studied using Ca2+-, cAMP-, and impedance-based assays at recombinant FFA1 and free fatty acid receptor 4, formerly known as GPR120 (FFA4) expressing 1321N1 cells and the rat insulinoma cell line INS-1. Furthermore, we investigated the systemic effect of TUG-469 on glucose tolerance in pre-diabetic New Zealand obese (NZO) mice performing a glucose tolerance test after intraperitoneal administration of 5 mg/kg TUG-469. In comparison to GW9508, TUG-469 showed a 1.7- to 3.0-times higher potency in vitro at 1321N1 cells recombinantly expressing FFA1. Both compounds increased insulin secretion from rat insulinoma INS-1 cells. TUG-469 is > 200-fold selective for FFA1 over FFA4. Finally, a single dose of 5 mg/kg TUG-469 significantly improved glucose tolerance in pre-diabetic NZO mice. TUG-469 turned out as a promising candidate for further drug development of FFA1 agonists for treatment of type 2 diabetes mellitus.

Keywords

Diabetes FFA1 Free fatty acids GPR40 TUG-469 

Abbreviations

FFA

Free fatty acids

FFA1

Free fatty acid receptor 1, formerly known as GPR40

FFA4

Free fatty acid receptor 4, formerly known as GPR120

GSIS

Glucose-stimulated insulin secretion

NZO

New Zealand obese

T2DM

Diabetes mellitus type 2

Notes

Acknowledgment

We thank Prof. Evi Kostenis (University of Bonn) for providing the pcDNA3.1(+)-hFFA1-Flag M1-plasmid and Lone Overgaard Storm (University of Southern Denmark) for her valuable contributions to the synthesis of racemic TAK-875.

This work was supported by a PhD fellowship of the Dr. Hilmer Foundation (Association for the Promotion of Science and Humanities in Germany) to Christian Urban. The synthetic work has been financed by the Danish Council for Independent Research/Technology and Production (grant 09–070364).

Conflict of interest

The authors declare that they have no conflict of interest.

The animal studies have been approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All persons gave their informed consent prior to their inclusion in the study.

References

  1. Briscoe CP, Peat AJ, McKeown SC, Corbett DF, Goetz AS, Littleton TR et al (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 148(5):619–628PubMedCrossRefGoogle Scholar
  2. Burant CF, Viswanathan P, Marcinak J, Cao C, Vakilynejad M, Xie B, et al (2012) TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 379(9824):1403–1411Google Scholar
  3. Christiansen E, Urban C, Merten N, Liebscher K, Karlsen KK, Hamacher A et al (2008) Discovery of potent and selective agonists for the free fatty acid receptor 1 (FFA(1)/GPR40), a potential target for the treatment of type II diabetes. J Med Chem 51(22):7061–7064PubMedCrossRefGoogle Scholar
  4. Christiansen E, Due-Hansen ME, Urban C, Merten N, Pfleiderer M, Karlsen KK et al (2010) Structure-activity study of dihydrocinnamic acids and discovery of the potent FFA1 (GPR40) agonist TUG-469. ACS Med Chem Lett 1(7):345–349CrossRefGoogle Scholar
  5. Christiansen E, Urban C, Grundmann M, Due-Hansen ME, Hagesaether E, Schmidt J et al (2011) Identification of a potent and selective free fatty acid receptor 1 (FFA1/GPR40) agonist with favorable physicochemical and in vitro ADME properties. J Med Chem 54(19):6691–6703PubMedCrossRefGoogle Scholar
  6. Christiansen E, Due-Hansen ME, Urban C, Grundmann M, Schroder R, Hudson BD et al (2012) Free fatty acid receptor 1 (FFA1/GPR40) agonists: mesylpropoxy appendage lowers lipophilicity and improves ADME properties. J Med Chem 55(14):6624–6628PubMedCrossRefGoogle Scholar
  7. Christiansen E, Due-Hansen ME, Urban C, Grundmann M, Schmidt J, Hansen SV, Hudson BD, Zaibi M, Markussen SB, Hagesaether E, Milligan G, Cawthorne MA, Kostenis E, Kassack MU, Ulven T (2013a) Discovery of a potent and selective free fatty acid receptor 1 agonist with low lipophilicity and high oral bioavailability. J Med Chem 56(3):982–992Google Scholar
  8. Christiansen E, Hansen SV, Urban C, Hudson BD, Wargent ET, Grundmann M, Jenkins L, Zaibi M, Stocker CJ, Ullrich S, Kostenis E, Kassack MU, Milligan G, Cawthorne MA, Ulven T (2013b) Discovery of TUG-770: A highly potent free fatty acid receptor 1 (FFA1/GPR40) agonist for treatment of type 2 diabetes. ACS Med Chem Lett 4(5):441-445Google Scholar
  9. Doshi LS, Brahma MK, Sayyed SG, Dixit AV, Chandak PG, Pamidiboina V et al (2009) Acute administration of GPR40 receptor agonist potentiates glucose-stimulated insulin secretion in vivo in the rat. Metab Clin Exp 58(3):333–343PubMedCrossRefGoogle Scholar
  10. Edfalk S, Steneberg P, Edlund H (2008) GPR40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 57:2280–2287PubMedCrossRefGoogle Scholar
  11. Feng DD, Luo ZQ, Roh SG, Hernandez M, Tawadros N, Keating DJ et al (2006) Reduction in voltage-gated K + currents in primary cultured rat pancreatic beta-cells by linoleic acids. Endocrinology 147(2):674–682PubMedCrossRefGoogle Scholar
  12. Garrido DM, Corbett DF, Dwornik KA, Goetz AS, Littleton TR, McKeown SC et al (2006) Synthesis and activity of small molecule GPR40 agonists. Bioorg Med Chem Lett 16(7):1840–1845PubMedCrossRefGoogle Scholar
  13. Gohlke H, Klebe G (2002) DrugScore meets CoMFA: adaptation of fields for molecular comparison (AFMoC) or how to tailor knowledge-based pair-potentials to a particular protein. J Med Chem 45(19):4153–4170PubMedCrossRefGoogle Scholar
  14. Hamacher A, Weigt M, Wiese M, Hoefgen B, Lehmann J, Kassack MU (2006) Dibenzazecine compounds with a novel dopamine/5HT2A receptor profile and 3D-QSAR analysis. BMC Pharmacol 6(11)Google Scholar
  15. Holliday ND, Watson SJ, Brown AJ (2011) Drug discovery opportunities and challenges at g protein coupled receptors for long chain free Fatty acids. Front Endocrinol (Lausanne) 2:112. doi: 10.3389/fendo.2011.00112
  16. Houze JB, Zhu L, Sun Y, Akerman M, Qiu W, Zhang AJ et al (2012) AMG 837: a potent, orally bioavailable GPR40 agonist. Bioorg Med Chem Lett 22(2):1267–1270PubMedCrossRefGoogle Scholar
  17. Hudson BD, Ulven T, Milligan G (2013) The therapeutic potential of allosteric ligands for free fatty acid sensitive GPCRs. Curr Top Med Chem 13(1):14–25PubMedCrossRefGoogle Scholar
  18. Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S et al (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422(6928):173–176PubMedCrossRefGoogle Scholar
  19. Kassack MU, Hofgen B, Lehmann J, Eckstein N, Quillan JM, Sadee W (2002) Functional screening of g protein-coupled receptors by measuring intracellular calcium with a fluorescence microplate reader. J Biomol Screen 7(3):233–246PubMedGoogle Scholar
  20. Kebede MA, Alquier T, Latour MG, Poitout V (2009) Lipid receptors and islet function: therapeutic implications? Diabetes Obes Metab 11:10–20PubMedCrossRefGoogle Scholar
  21. Lin DC, Zhang J, Zhuang R, Li F, Nguyen K, Chen M et al (2011) AMG 837: a novel GPR40/FFA1 agonist that enhances insulin secretion and lowers glucose levels in rodents. PLoS One 6(11):e27270PubMedCrossRefGoogle Scholar
  22. Luo J, Swaminath G, Brown SP, Zhang J, Guo Q, Chen M et al (2012) A potent class of GPR40 full agonists engages the enteroinsular axis to promote glucose control in rodents. PLoS One 7(10):e46300PubMedCrossRefGoogle Scholar
  23. Nagasumi K, Esaki R, Iwachidow K, Yasuhara Y, Ogi K, Tanaka H et al (2009) Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice (vol 58, pg 1067, 2009). Diabetes 58(7):1067–1076PubMedCrossRefGoogle Scholar
  24. Negoro N, Sasaki S, Mikami S, Ito M, Suzuki M, Tsujihata Y et al (2010) Discovery of TAK-875: a potent, selective, and orally bioavailable GPR40 agonist. ACS Med Chem Lett 1(6):290–294CrossRefGoogle Scholar
  25. Sasaki S, Kitamura S, Negoro N, Suzuki M, Tsujihata Y, Suzuki N et al (2011) Design, synthesis, and biological activity of potent and orally available G protein-coupled receptor 40 agonists. J Med Chem 54(5):1365–1378PubMedCrossRefGoogle Scholar
  26. Tikhonova IG, Sum CS, Neumann S, Thomas CJ, Raaka BM, Costanzi S et al (2007) Bidirectional, iterative approach to the structural delineation of the functional "Chemoprint" in GPR40 for agonist recognition. J Med Chem 50(13):2981–2989PubMedCrossRefGoogle Scholar
  27. Tsujihata Y, Ito R, Suzuki M, Harada A, Negoro N, Yasuma T et al (2011) TAK-875, an orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats. J Pharmacol Exp Ther 339(1):228–237PubMedCrossRefGoogle Scholar
  28. Wagner R, Kaiser G, Gerst F, Christiansen E, Due-Hansen ME, Grundmann M, et al (2013) Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans. Diabetes 62(6):2106–2111Google Scholar
  29. Zhou YP, Tan C, Eiermann G, Petrov A, Feng Y, Zhou CY et al (2008) Small molecule GPR40 agonists as glucose-dependent insulin secretion (GDIS) agents for the treatment of T2DM. Diabetes 57(8):2211–2219PubMedCrossRefGoogle Scholar
  30. Zhou CY, Tang C, Chang E, Ge M, Lin SN, Cline E et al (2010) Discovery of 5-aryloxy-2,4-thiazolidinediones as potent GPR40 agonists. Bioorg Med Chem Lett 20(3):1298–1301PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Urban
    • 1
  • A. Hamacher
    • 1
  • H. J. Partke
    • 2
  • M. Roden
    • 2
    • 3
  • S. Schinner
    • 3
  • E. Christiansen
    • 4
  • M. E. Due-Hansen
    • 4
  • T. Ulven
    • 4
  • H. Gohlke
    • 1
  • M. U. Kassack
    • 1
    Email author
  1. 1.Pharmaceutical and Medicinal ChemistryHeinrich-Heine-UniversityDüsseldorfGermany
  2. 2.Deutsches Diabetes ZentrumDüsseldorfGermany
  3. 3.Klinik für Endokrinologie und DiabetologieUniversitätsklinikum DüsseldorfDüsseldorfGermany
  4. 4.Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations