Skip to main content

Advertisement

Log in

Dietary phytoestrogen improves relaxant responses to 17-β-estradiol in aged but not ovariectomised rat bladders

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

This study examined the effect of age, ovariectomy and dietary phytoestrogen ingestion on 17-β-estradiol-mediated relaxant responses and messenger RNA (mRNA) and protein expression of oestrogen receptor subtypes in the rat isolated bladder. Female Wistar rats (8 weeks) were anaesthetised, and the ovaries were removed (ovx) or left intact (sham). Rats were fed either normal rat chow (soy, phytoestrogens) or a non-soy (phytoestrogen free) diet. Isolated bladder from rats aged 12, 24 or 52 weeks were pre-contracted with 3 μM carbachol prior to obtaining a concentration response curve to 17-β-estradiol. Protein and mRNA expression of the oestrogen receptor subtypes was completed using immunohistochemistry and real-time PCR, respectively. Relatively moderate relaxant responses to 17-β-estradiol were observed in bladders from all age and treatment groups. However, in soy-fed sham 52-week-old rats, the bladder exhibited enhanced relaxant responses to 17-β-estradiol when compared to tissues from other age-matched rat treatment groups (P < 0.05). In bladders from female rats, the mRNA and protein expression of oestrogen receptors β was significantly greater than the expression of the oestrogen receptor α. Oestrogen receptor α mRNA expression declined with age (P < 0.05), whereas oestrogen receptor β expression did not change in any of the treatment groups (P > 0.05). Diet, overiectomy or age did not alter the protein expression of either oestrogen receptor subtype in the bladder (P > 0.05). While a soy diet improved relaxant effects to the 17-β-estradiol with age, it did not alter relaxant responses in bladders from ovariectomised rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Carley ME, Rickard DJ, Gebhart JB, Webb MJ, Podratz KC, Spelsberg TC (2003) Distribution of estrogen receptors alpha and beta mRNA in mouse urogenital tissues and their expression after oophorectomy and estrogen replacement. Int Urogynecol J Pelvic Floor Dysfunct 14(2):141–145. doi:10.1007/s00192-002-1020-5

    Article  PubMed  Google Scholar 

  • Castelo-Branco C, Cancelo MJ, Villero J, Nohales F, Julia MD (2005) Management of post-menopausal vaginal atrophy and atrophic vaginitis. Maturitas 52(Suppl 1):S46–S52. doi:10.1016/j.maturitas.2005.06.014

    Article  PubMed  Google Scholar 

  • Cheskis BJ, Greger JG, Nagpal S, Freedman LP (2007) Signaling by estrogens. J Cell Physiol 213(3):610–617. doi:10.1002/jcp.21253

    Article  PubMed  CAS  Google Scholar 

  • Dambros M, Rodrigues Palma PC, Mandarim-de-Lacerda CA, Miyaoka R, Rodrigues Netto N Jr (2003) The effect of ovariectomy and estradiol replacement on collagen and elastic fibers in the bladder of rats. Int Urogynecol J Pelvic Floor Dysfunct 14(2):108–112. doi:10.1007/s00192-002-1023-2

    Article  PubMed  CAS  Google Scholar 

  • Diep N, Constantinou CE (1999) Age dependent response to exogenous estrogen on micturition, contractility and cholinergic receptors of the rat bladder. Life Sci 64(23):PL 279–PL 289

    Article  CAS  Google Scholar 

  • Fleischmann N, Christ G, Sclafani T, Melman A (2002) The effect of ovariectomy and long-term estrogen replacement on bladder structure and function in the rat. J Urol 168(3):1265–1268. doi:10.1097/01.ju.0000023406.93873.08

    Article  PubMed  CAS  Google Scholar 

  • Frazier EP, Peters SL, Braverman AS, Ruggieri MR Sr, Michel MC (2008) Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and beta-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol 377(4–6):449–462. doi:10.1007/s00210-007-0208-0

    Article  PubMed  CAS  Google Scholar 

  • Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Strom A, Treuter E, Warner M, Gustafsson JA (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87(3):905–931. doi:10.1152/physrev.00026.2006

    Article  PubMed  CAS  Google Scholar 

  • Hextall A (2000) Oestrogens and lower urinary tract function. Maturitas 36(2):83–92

    Article  PubMed  CAS  Google Scholar 

  • Hogan AM, Collins D, Sheehan K, Zierau O, Baird AW, Winter DC (2010) Rapid effects of phytoestrogens on human colonic smooth muscle are mediated by oestrogen receptor beta. Mol Cell Endocrinol 320(1–2):106–110. doi:10.1016/j.mce.2010.01.025

    Article  PubMed  CAS  Google Scholar 

  • Iosif CS, Bekassy Z (1984) Prevalence of genito-urinary symptoms in the late menopause. Acta Obstet Gynecol Scand 63(3):257–260

    Article  PubMed  CAS  Google Scholar 

  • Keung W, Vanhoutte PM, Man RY (2005) Acute impairment of contractile responses by 17beta-estradiol is cAMP and protein kinase G dependent in vascular smooth muscle cells of the porcine coronary arteries. Br J Pharmacol 144(1):71–79. doi:10.1038/sj.bjp.0706018

    Article  PubMed  CAS  Google Scholar 

  • Keung W, Chan ML, Ho EY, Vanhoutte PM, Man RY (2011) Non-genomic activation of adenylyl cyclase and protein kinase G by 17beta-estradiol in vascular smooth muscle of the rat superior mesenteric artery. Pharmacol Res off J Ital Pharmacol Soc 64(5):509–516. doi:10.1016/j.phrs.2011.05.010

    CAS  Google Scholar 

  • Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139(10):4252–4263

    Article  PubMed  CAS  Google Scholar 

  • Lluel P, Palea S, Barras M, Grandadam F, Heudes D, Bruneval P, Corman B, Martin DJ (2000) Functional and morphological modifications of the urinary bladder in aging female rats. Am J Physiol Regul Integr Comp Physiol 278(4):R964–R972

    PubMed  CAS  Google Scholar 

  • Makela S, Strauss L, Kuiper G, Valve E, Salmi S, Santti R, Gustafsson JA (2000) Differential expression of estrogen receptors alpha and beta in adult rat accessory sex glands and lower urinary tract. Mol Cell Endocrinol 170(1–2):219–229

    PubMed  CAS  Google Scholar 

  • Matsumura A, Ghosh A, Pope GS, Darbre PD (2005) Comparative study of oestrogenic properties of eight phytoestrogens in MCF7 human breast cancer cells. J Steroid Biochem Mol Biol 94(5):431–443. doi:10.1016/j.jsbmb.2004.12.041

    Article  PubMed  CAS  Google Scholar 

  • Merry BJ, Holehan AM (1979) Onset of puberty and duration of fertility in rats fed a restricted diet. J Reprod Fertil 57(2):253–259

    Article  PubMed  CAS  Google Scholar 

  • Morito K, Hirose T, Kinjo J, Hirakawa T, Okawa M, Nohara T, Ogawa S, Inoue S, Muramatsu M, Masamune Y (2001) Interaction of phytoestrogens with estrogen receptors alpha and beta. Biol Pharm Bull 24(4):351–356

    Article  PubMed  CAS  Google Scholar 

  • Owen SJ, Rose'Meyer RB, Massa HM (2011) Dietary phytoestrogens maintain contractile responses to carbachol with age in the female rat isolated bladder. Life Sci 89(7–8):213–220. doi:10.1016/j.lfs.2011.05.022

    Article  PubMed  CAS  Google Scholar 

  • Owen SJ, Massa HH, Rose'Meyer RB (2012) Loss of adenosine A(2B) receptor mediated relaxant responses in the aged female rat bladder; effects of dietary phytoestrogens. Naunyn Schmiedebergs Arch Pharmacol 385(5):539–549. doi:10.1007/s00210-011-0722-y

    Article  PubMed  CAS  Google Scholar 

  • Palmieri K, Mannikarottu AS, Chichester P, Kogan B, Leggett RE, Whitbeck C, Levin RM (2007) The effects of cyclical oestrogen on bladder and urethral structure and function. BJU Int 99(1):171–176. doi:10.1111/j.1464-410X.2007.06532.x

    Article  PubMed  CAS  Google Scholar 

  • Peeters PH, Slimani N, van der Schouw YT, Grace PB, Navarro C, Tjonneland A, Olsen A, Clavel-Chapelon F, Touillaud M, Boutron-Ruault MC, Jenab M, Kaaks R, Linseisen J, Trichopoulou A, Trichopoulos D, Dilis V, Boeing H, Weikert C, Overvad K, Pala V, Palli D, Panico S, Tumino R, Vineis P, Bueno-de-Mesquita HB, van Gils CH, Skeie G, Jakszyn P, Hallmans G, Berglund G, Key TJ, Travis R, Riboli E, Bingham SA (2007) Variations in plasma phytoestrogen concentrations in European adults. J Nutr 137(5):1294–1300

    PubMed  CAS  Google Scholar 

  • Pilsakova L, Riecansky I, Jagla F (2010) The physiological actions of isoflavone phytoestrogens. Physiol Res 59(5):651–664

    Google Scholar 

  • Rose'Meyer RB, Mellick AS, Garnham BG, Harrison GJ, Massa HM, Griffiths LR (2003) The measurement of adenosine and estrogen receptor expression in rat brains following ovariectomy using quantitative PCR analysis. Brain Res Protocol 11(1):9–18

    Article  Google Scholar 

  • Seidlova-Wuttke D, Schultens A, Jarry H, Wuttke W (2004) Urodynamic effects of estradiol (E2) in ovariectomized (ovx) rats. Endocrine 23(1):25–32. doi:10.1385/endo:23:1:25

    Article  PubMed  CAS  Google Scholar 

  • Smith AL, Wein AJ (2010) Estrogen replacement therapy for the treatment of postmenopausal genitourinary tract dysfunction. Discov Med 10(55):500–510

    PubMed  Google Scholar 

  • Teoh H, Man RY (2000) Enhanced relaxation of porcine coronary arteries after acute exposure to a physiological level of 17beta-estradiol involves non-genomic mechanisms and the cyclic AMP cascade. Br J Pharmacol 129(8):1739–1747. doi:10.1038/sj.bjp.0703252

    Article  PubMed  CAS  Google Scholar 

  • Thielemann A, Wuttke W, Wuttke M, Seidlova-Wuttke D (2010) Comparison of urodynamic effects of phytoestrogens equol, puerarin and genistein with these of estradiol 17beta in ovariectomized rats. Exp Gerontol 45(2):129–137. doi:10.1016/j.exger.2009.11.003

    Article  PubMed  CAS  Google Scholar 

  • Tsang SY, Yao X, Wong CM, Chan FL, Chen ZY, Huang Y (2004) Differential regulation of K+ and Ca2+ channel gene expression by chronic treatment with estrogen and tamoxifen in rat aorta. Eur J Pharmacol 483(2–3):155–162

    Article  PubMed  CAS  Google Scholar 

  • Wuttke W, Jarry H, Becker T, Schultens A, Christoffel V, Gorkow C, Seidlova-Wuttke D (2003) Phytoestrogens: endocrine disrupters or replacement for hormone replacement therapy? Maturitas 44(Suppl 1):S9–S20

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Li YZ, Mao Z, Gu P, Shang M (2009) Effects of estrogen and tibolone on bladder histology and estrogen receptors in rats. Chin Med J 122(4):381–385

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roselyn B. Rose’Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, S.J., Massa, H.M. & Rose’Meyer, R.B. Dietary phytoestrogen improves relaxant responses to 17-β-estradiol in aged but not ovariectomised rat bladders. Naunyn-Schmiedeberg's Arch Pharmacol 386, 917–928 (2013). https://doi.org/10.1007/s00210-013-0892-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0892-x

Keywords

Navigation