Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 386, Issue 2, pp 155–166 | Cite as

Dopamine D3 receptor antagonism—still a therapeutic option for the treatment of schizophrenia

  • Gerhard Gross
  • Karsten Wicke
  • Karla U. Drescher


The potential of D3 receptor antagonism to treat positive, negative, and cognitive symptoms of schizophrenia is reviewed on the basis of preclinical results and preliminary clinical data. Dopamine D3 receptors are expressed in mesencephalic, limbic, and cortical areas relevant to psychotic and cognitive symptoms of schizophrenia. As expected, selective dopamine D3 receptor antagonists are not effective in antipsychotic animal models, reflecting D2 receptor antagonism. However, selective D3 receptor antagonists affect electrical activity of dopamine neurons in the ventral tegmental area similar to atypical antipsychotics, counteract effects produced by NMDA glutamate receptor blockade, and enhance cortical dopamine and acetylcholine in microdialysis. In contrast to dopamine D2 receptor antagonists, D3 antagonists positively influence a variety of social and cognitive behaviors in rodents, including tests representing cognitive flexibility and executive function, which are both impaired in schizophrenia patients. Despite considerable affinity for D3 receptors, the second-generation antipsychotics clozapine, risperidone, and olanzapine when administered to patients with schizophrenia seem not to occupy D3 receptors sufficiently to derive any conclusion on a D3-mediated therapeutic benefit. ABT-925, the first selective D3 receptor antagonist, was recently studied in patients with schizophrenia. It produced cognitive signals but did not achieve sufficient D3 receptor occupancy to test the hypothesis that D3 receptor antagonism is of therapeutic value to treat symptoms of schizophrenia. Based on mechanistic and experimental considerations and due to the fact that D3 receptor antagonism can inhibit extrapyramidal symptoms and produce neither anhedonia nor metabolic adverse effects, the development and clinical testing of newer D3 receptor antagonists with high potency at D3 receptors, enabling sufficient receptor occupancy, is highly warranted.


Dopamine D3 receptor Atypical antipsychotics Negative symptoms of schizophrenia Cognitive deficit in schizophrenia PHNO imaging D3 receptor PET ABT-925 


Conflict of interest

K.W. and K.D. are employees while G.G. was a former employee of Abbott GmbH & Co. KG, Ludwigshafen, Germany.


  1. Aghajanian GK, Bunney BS (1977) Dopamine “autoreceptors”: pharmacological characterization by microiontophoretic single cell recording studies. Naunyn Schmiedebergs Arch Pharmacol 297:1–7PubMedGoogle Scholar
  2. Ashby CR, Minabe Y, Stemp G, Hagan JJ, Middlemiss DN (2000) Acute and chronic administration of the selective D3 receptor antagonist SB-277011-A alters activity of midbrain dopamine neurons in rats: an in vivo electrophysiological study. J Pharmacol Exp Ther 294:1166–1174PubMedGoogle Scholar
  3. Benes FM (2012) Nicotinic receptors and functional regulation of GABA cell microcircuitry in bipolar disorder and schizophrenia. In: Geyer M, Gross G (eds) Novel antischizophrenia treatments; Handb Exp Pharmacol 213:401–417. Springer, Heidelberg. doi: 10.1007/978-3-642-25758-2_13 Google Scholar
  4. Bespalov A, Jongen-Rêlo AL, van Gaalen M, Harich S, Schoemaker H, Gross G (2007) Habituation deficits induced by metabotropic glutamate receptors 2/3 receptor blockade in mice: reversal by antipsychotic drugs. J Pharmacol Exp Ther 320:944–950PubMedGoogle Scholar
  5. Bhathena A, Wang Y, Kraft JB, Idler KB, Abel SJ, Holley-Shanks RB, Robieson WZ, Spear BB, Redden L, Katz D (2011) Association between dopamine D3 receptor genotype and response to dopamine D3 receptor antagonist in schizophrenic subjects. Clin Pharmacol Ther 89(Suppl 1):S76Google Scholar
  6. Booij J, van Amelsvoort T (2012) Imaging as tool to investigate psychoses and antipsychotics. In: Gross G, Geyer M (eds) Current antipsychotics; Handb Exp Pharmacol 212. Springer, HeidelbergGoogle Scholar
  7. Bordet R, Ridray S, Carboni S, Diaz J, Sokoloff P, Schwartz JC (1997) Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proc Natl Acad Sci USA 94:3363–3367PubMedGoogle Scholar
  8. Bordet R, Ridray S, Schwartz JC, Sokoloff P (2000) Involvement of the direct striatonigral pathway in levodopa-induced sensitization in 6-hydroxydopamine-lesioned rats. Eur J Neurosci 12:2117–2123PubMedGoogle Scholar
  9. Carlsson A (2002) Birth of dopamine: a Cinderella saga. Handb Exp Pharmacol 154/I:23–42Google Scholar
  10. Carter CS, Barch DM (2007) Cognitive neuroscience-based approaches to measuring and improving treatment effects on cognition in schizophrenia: the CNTRICS initiative. Schizophr Bull 33:1131–1137PubMedGoogle Scholar
  11. Castagné V, Moser PC, Porsolt RD (2009) Preclinical behavioral models for predicting antipsychotic activity. Adv Pharmacol 57:381–418PubMedGoogle Scholar
  12. Chiodo LA, Bunney BS (1985) Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons. J Neurosci 5:2539–2544PubMedGoogle Scholar
  13. Collip D, Myin-Germeys I, van Os J (2008) Does the concept of “sensitization” provide a plausible mechanism for the putative link between the environment and schizophrenia? Schizophr Bull 34:220–225PubMedGoogle Scholar
  14. Coyle JT, Basu A, Benneyworth M, Balu D, Konopaske G (2012) Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications. In: Geyer M, Gross G (eds) Novel antischizophrenia treatments; Handb Exp Pharmacol 213:267–295. Springer, Heidelberg. doi: 10.1007/978-3-642-25758-2_10 Google Scholar
  15. De Steno DA, Schmauss C (2009) A role for dopamine D2 receptors in reversal learning. Neuroscience 162:118–127PubMedGoogle Scholar
  16. Diaz J, Pilon C, Le FB, Gros C, Triller A, Schwartz JC, Sokoloff P (2000) Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J Neurosci 20:8677–8684PubMedGoogle Scholar
  17. Drescher KU, Garcia-Ladona FJ, Teschendorf HJ, Traut M, Unger L, Wicke K, Weddige FK, Freeman AS, Gross G (2002) In vivo effects of the selective dopamine D3 receptor antagonist A-437203. Abstr Soc Neurosci 894.6Google Scholar
  18. Drescher KU, Behl B, Freeman AS, Hamilton ME, Wicke KM, Unger LV, Haupt A, Gross G, Schoemaker H, Sullivan JP (2005) ABT-127, a new selective dopamine D3 receptor antagonist: neurochemical and electrophysiological studies in vivo. Abstr Soc Neurosci 913.19Google Scholar
  19. Featherstone RE, Kapur S, Fletcher PJ (2007) The amphetamine-induced sensitized state as a model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31:1556–1571PubMedGoogle Scholar
  20. Fleischhacker W (2000) Negative symptoms in patients with schizophrenia with special reference to the primary versus secondary distinction. Encéphale 26(1):12–14PubMedGoogle Scholar
  21. Fujisawa S, Buzsáki G (2011) A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 72:153–165PubMedGoogle Scholar
  22. Gainetdinov RR, Sotnikova TD, Grekhova TV, Rayevsky KS (1996) In vivo evidence for preferential role of dopamine D3 receptor in the presynaptic regulation of dopamine release but not synthesis. Eur J Pharmacol 308:261–269PubMedGoogle Scholar
  23. Gallezot JD, Beaver JD, Gunn RN, Nabulsi N, Weinzimmer D, Singhal T, Slifstein M, Fowles K, Ding YS, Huang Y, Laruelle M, Carson RE, Rabiner EA (2012) Affinity and selectivity of [11C]-(+)-PHNO for the D3 and D2 receptors in the rhesus monkey brain in vivo. Synapse 66:489–500PubMedGoogle Scholar
  24. Ginovart N, Kapur S (2012) Role of dopamine D2 receptors for antipsychotic activity. In: Gross G, Geyer M (eds) Current antipsychotics; Handb Exp Pharmacol 212. Springer, HeidelbergGoogle Scholar
  25. Girgis RR, Xu X, Miyake N, Easwaramoorthy B, Gunn RN, Rabiner EA, Abi-Dargham A, Slifstein M (2011) In vivo binding of antipsychotics to D3 and D2 receptors: a PET study in baboons with [11C]-(+)-PHNO. Neuropsychopharmacology 36:887–895PubMedGoogle Scholar
  26. Glickstein SB, Hof PR, Schmauss C (2002) Mice lacking dopamine D2 and D3 receptors have spatial working memory deficits. J Neurosci 22:5619–5629PubMedGoogle Scholar
  27. Glickstein SB, Desteno DA, Hof PR, Schmauss C (2005) Mice lacking dopamine D2 and D3 receptors exhibit differential activation of prefrontal cortical neurons during tasks requiring attention. Cereb Cortex 15:1016–1024PubMedGoogle Scholar
  28. Gobert A, Rivet JM, Audinot V, Cistarelli L, Spedding M, Vian J, Peglion JL, Millan MJ (1995) Functional correlates of dopamine D3 receptor activation in the rat in vivo and their modulation by the selective antagonist, (+)-S 14297: II. Both D2 and “silent” D3 autoreceptors control synthesis and release in mesolimbic, mesocortical and nigrostriatal pathways. J Pharmacol Exp Ther 275:899–913PubMedGoogle Scholar
  29. Gobert A, Lejeune F, Rivet JM, Cistarelli L, Millan MJ (1996) Dopamine D3 (auto) receptors inhibit dopamine release in the frontal cortex of freely moving rats in vivo. J Neurochem 66:2209–2212PubMedGoogle Scholar
  30. Grace AA, Bunney BS, Moore H, Todd CL (1997) Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends Neurosci 20:31–37PubMedGoogle Scholar
  31. Graff-Guerrero A, Willeit M, Ginovart N, Mamo D, Mizrahi R, Rusjan P, Vitcu I, Seeman P, Wilson AA, Kapur S (2008) Brain region binding of the D2/3 agonist [11C]-(+)-PHNO and the D2/3 antagonist [11C]raclopride in healthy humans. Hum Brain Mapp 29:400–410PubMedGoogle Scholar
  32. Graff-Guerrero A, Mamo D, Shammi CM, Mizrahi R, Marcon H, Barsoum P, Rusjan P, Houle S, Wilson AA, Kapur S (2009) The effect of antipsychotics on the high-affinity state of D2 and D3 receptors: a positron emission tomography study With [11C]-(+)-PHNO. Arch Gen Psychiatry 66:606–615PubMedGoogle Scholar
  33. Graff-Guerrero A, Redden L, Abi-Saab W, Katz DA, Houle S, Barsoum P, Bhathena A, Palaparthy R, Saltarelli MD, Kapur S (2010) Blockade of [11C](+)-PHNO binding in human subjects by the dopamine D3 receptor antagonist ABT-925. Int J Neuropsychopharmacol 13:273–287Google Scholar
  34. Grauer SM, Pulito VL, Navarra RL, Kelly MP, Kelley C, Graf R, Langen B, Logue S, Brennan J, Jiang L, Charych E, Egerland U, Liu F, Marquis KL, Malamas M, Hage T, Comery TA, Brandon NJ (2009) Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia. J Pharmacol Exp Ther 331:574–590PubMedGoogle Scholar
  35. Griffon N, Pilon C, Schwartz JC, Sokoloff P (1995) The preferential dopamine D3 receptor ligand, (+)-UH232, is a partial agonist. Eur J Pharmacol 282(1–3):R3–R4PubMedGoogle Scholar
  36. Gross G, Drescher K (2012) The role of dopamine D3 receptors in antipsychotic activity and cognitive functions. In: Geyer M, Gross G (eds) Novel antischizophrenia treatments; Handb Exp Pharmacol 213:167–210. Springer, Heidelberg. doi: 10.1007/978-3-642-25758-2_7
  37. Gross G, Bialojan S, Drescher K, Freeman AS, Garcia-Ladona FJ, Höger T, Lansky A, Needham P, Teschendorf HJ, Traut M, Sokoloff P, Unger L, Wicke K (1997) Evaluation of D3 receptor antagonists. Eur Neuropsychopharmacol 7(Suppl 2):S120Google Scholar
  38. Gross G, Bialojan S, Drescher K, Freeman AS, Garcia-Ladona FJ, Höger T, Needham P, Teschendorf HJ, Treiber HJ, Traut M, Sokoloff P, Starck D, Unger L, Wicke K (1998) Pharmacological characterisation of novel D3 receptor antagonists. Naunyn Schmiedebergs Arch Pharmacol 358:R375Google Scholar
  39. Gross G, Drescher KU, Haupt A, Teschendorf HJ, Jongen-Rêlo AL, Wicke KM, Zhang M, Browman KE, Ballard ME, Rueter LE, Decker MW, Schoemaker H, Sullivan JP (2005) ABT-127, a new selective dopamine D3 receptor antagonist: behavioral pharmacology studies. Abstr Soc Neurosci 913.20Google Scholar
  40. Gurevich EV, Joyce JN (1999) Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology 20:60–80Google Scholar
  41. Gyertyán I, Sághy K (2007) The selective dopamine D3 receptor antagonists, SB 277011-A and S 33084 block haloperidol-induced catalepsy in rats. Eur J Pharmacol 572:171–174PubMedGoogle Scholar
  42. Gyertyán I, Sághy K, Laszy J, Elekes O, Kedves R, Gémesi LI, Pásztor G, Zájer-Balázs M, Kapás M, Agai Csongor E, Domány G, Kiss B, Szombathelyi Z (2008) Subnanomolar dopamine D3 receptor antagonism coupled to moderate D2 affinity results in favourable antipsychotic-like activity in rodent models: II. behavioural characterisation of RG-15. Naunyn Schmiedebergs Arch Pharmacol 378:529–539PubMedGoogle Scholar
  43. Hall HÇ, Halldin C, Dijkstra D, Wikström HÇ, Wise LD, Pugsley TA, Sokoloff P, Pauli S, Farde L, Sedvall GÇ (1996) Autoradiographic localisation of D3-dopamine receptors in the human brain using the selective D3-dopamine receptor agonist (+)-[3H] PD 128907. Psychopharmacology (Berl) 128:240–247Google Scholar
  44. Heidbreder C (2008) Selective antagonism at dopamine D3 receptors as a target for drug addiction pharmacotherapy: a review of preclinical evidence. CNS Neurol Disord Drug Targets 7:410–421PubMedGoogle Scholar
  45. Jongen-Rêlo AL, Drescher KU, Teschendorf HJ, Rueter LE, Unger LV, Gross G, Schoemaker H (2004) Effects of dopamine D3 receptor antagonists and antipsychotic drugs on the disruption of huddling behavior by dopamine agonists. Society for Neuroscience Abstract No.350.1Google Scholar
  46. Joseph JD, Wang YM, Miles PR, Budygin EA, Picetti R, Gainetdinov RR, Caron MG, Wightman RM (2002) Dopamine autoreceptor regulation of release and uptake in mouse brain slices in the absence of D3 receptors. Neuroscience 112:39–49PubMedGoogle Scholar
  47. Joyce JN, Millan MJ (2005) Dopamine D3 receptor antagonists as therapeutic agents. Drug Discov Today 10:917–925PubMedGoogle Scholar
  48. Kagaya T, Yonaga M, Furuya Y, Hashimoto T, Kuroki J, Nishizawa Y (1996) Dopamine D3 agonists disrupt social behavior in rats. Brain Res 721:229–232PubMedGoogle Scholar
  49. Kantrowitz JT, Javitt DC (2010) Thinking glutamatergically: changing concepts of schizophrenia based upon changing neurochemical models. Clin Schizophr Relat Psychoses 4:189–200PubMedGoogle Scholar
  50. Kapur S, Seeman P (2001) Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry 158:360–369PubMedGoogle Scholar
  51. Kasper S, Barnas C, Heiden A, Volz HP, Laakmann G, Zeit H, Pfolz H (1997) Pramipexole as adjunct to haloperidol in schizophrenia. Safety and efficacy. Eur Neuropsychopharmacol 7:65–70PubMedGoogle Scholar
  52. Koeltzow TE, Xu M, Cooper DC, Hu XT, Tonegawa S, Wolf ME, White FJ (1998) Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice. J Neurosci 18:2231–2238PubMedGoogle Scholar
  53. Kreiss DS, Bergstrom DA, Gonzalez AM, Huang KX, Sibley DR, Walters JR (1995) Dopamine receptor agonist potencies for inhibition of cell firing correlate with dopamine D3 receptor binding affinities. Eur J Pharmacol 277:209–214PubMedGoogle Scholar
  54. Kuepper R, Skinbjerg M, Abi-Dargham A (2012) The dopamine dysfunction in schizophrenia revisited: new insights into topography and course. In: Gross G, Geyer M (eds) Current antipsychotics; Handb Exp Pharmacol 212. Springer, HeidelbergGoogle Scholar
  55. Lacroix LP, Hows ME, Shah AJ, Hagan JJ, Heidbreder CA (2003) Selective antagonism at dopamine D3 receptors enhances monoaminergic and cholinergic neurotransmission in the rat anterior cingulate cortex. Neuropsychopharmacology 28:839–849PubMedGoogle Scholar
  56. Lacroix LP, Ceolin L, Zocchi A, Varnier G, Garzotti M, Curcuruto O, Heidbreder CA (2006) Selective dopamine D3 receptor antagonists enhance cortical acetylcholine levels measured with high-performance liquid chromatography/tandem mass spectrometry without anti-cholinesterases. J Neurosci Methods 157:25–31PubMedGoogle Scholar
  57. Lahti AC, Weiler M, Carlsson A, Tamminga CA (1998a) Effects of the D3 and autoreceptor-preferring dopamine antagonist (+)-UH232 in schizophrenia. J Neural Transm 105:719–734PubMedGoogle Scholar
  58. Lahti AC, Weiler MA, Corey PK, Lahti RA, Carlsson A, Tamminga CA (1998b) Antipsychotic properties of the partial dopamine agonist (−)-3-(3-hydroxyphenyl)-N-n-propylpiperidine (preclamol) in schizophrenia. Biol Psychiatry 43:2–11Google Scholar
  59. Laszy J, Laszlovszky I, Gyertyán I (2005) Dopamine D3 receptor antagonists improve the learning performance in memory-impaired rats. Psychopharmacology (Berl) 179:567–575Google Scholar
  60. Le Foll B, Goldberg SR, Sokoloff P (2005) The dopamine D3 receptor and drug dependence: effects on reward or beyond? Neuropharmacology 49:525–541PubMedGoogle Scholar
  61. Lecrubier Y (2003) A partial D3 receptor agonist in schizophrenia. Eur Neuropsychopharmacol 13(suppl 4):S167–S168Google Scholar
  62. Lejeune F, Millan MJ (1995) Activation of dopamine D3 autoreceptors inhibits firing of ventral tegmental dopaminergic neurones in vivo. Eur J Pharmacol 275:R7–R9PubMedGoogle Scholar
  63. Leriche L, Schwartz JC, Sokoloff P (2003) The dopamine D3 receptor mediates locomotor hyperactivity induced by NMDA receptor blockade. Neuropharmacology 45:174–181PubMedGoogle Scholar
  64. Leriche L, Diaz J, Sokoloff P (2004) Dopamine and glutamate dysfunctions in schizophrenia: role of the dopamine D3 receptor. Neurotox Res 6:63–71PubMedGoogle Scholar
  65. Lisman J (2011) Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia? Curr Opin Neurobiol Nov 11 [Epub ahead of print]Google Scholar
  66. Loiseau F, Millan MJ (2009) Blockade of dopamine D3 receptors in frontal cortex, but not in sub-cortical structures, enhances social recognition in rats: similar actions of D1 receptor agonists, but not of D2 antagonists. Eur Neuropsychopharmacol 19:23–33PubMedGoogle Scholar
  67. Maggio R, Millan MJ (2010) Dopamine D2-D3 receptor heteromers: pharmacological properties and therapeutic significance. Curr Opin Pharmacol 10:100–107PubMedGoogle Scholar
  68. Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM, Kleinman JE, Weinberger DR (2003) Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 116:127–137PubMedGoogle Scholar
  69. McCormick PN, Kapur S, Graff-Guerrero A, Raymond R, Nobrega JN, Wilson AA (2010) The antipsychotics olanzapine, risperidone, clozapine, and haloperidol are D2-selective ex vivo but not in vitro. Neuropsychopharmacology 35:1826–1835PubMedGoogle Scholar
  70. McKinzie DL, Bymaster FP (2012) Muscarinic mechanisms in psychotic disorders. In: Geyer M, Gross G (eds) Novel antischizophrenia treatments; Handb Exp Pharmacol 213;233–65. Springer, Heidelberg. doi: 10.1007/978-3-642-25758-2_9 Google Scholar
  71. Meltzer HY (2012) Serotonergic mechanisms as targets for existing and novel antipsychotics. In: Gross G, Geyer M (eds) Current antipsychotics; Handb Exp Pharmacol 212. Springer, HeidelbergGoogle Scholar
  72. Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 7:818–827PubMedGoogle Scholar
  73. Micale V, Cristino L, Tamburella A, Petrosino S, Leggio GM, Di MV, Drago F (2010) Enhanced cognitive performance of dopamine D3 receptor “knock-out” mice in the step-through passive-avoidance test: assessing the role of the endocannabinoid/endovanilloid systems. Pharmacol Res 61:531–536PubMedGoogle Scholar
  74. Micheli F, Arista L, Bonanomi G, Blaney FE, Braggio S, Capelli AM, Checchia A, Damiani F, Di-Fabio R, Fontana S, Gentile G, Griffante C, Hamprecht D, Marchioro C, Mugnaini M, Piner J, Ratti E, Tedesco G, Tarsi L, Terreni S, Worby A, Ashby CR Jr, Heidbreder C (2010) 1,2,4-Triazolyl azabicyclo[3.1.0]hexanes: a new series of potent and selective dopamine D3 receptor antagonists. J Med Chem 53:374–391PubMedGoogle Scholar
  75. Millan MJ, Brocco M (2008) Cognitive impairment in schizophrenia: a review of developmental and genetic models, and pro-cognitive profile of the optimised D3 > D2 antagonist, S33138. Therapie 63:187–229PubMedGoogle Scholar
  76. Millan MJ, Gressier H, Brocco M (1997) The dopamine D3 receptor antagonist, (+)-S 14297, blocks the cataleptic properties of haloperidol in rats. Eur J Pharmacol 321:R7–R9PubMedGoogle Scholar
  77. Millan MJ, Dekeyne A, Rivet JM, Dubuffet T, Lavielle G, Brocco M (2000a) S33084, a novel, potent, selective, and competitive antagonist at dopamine D3-receptors: II. Functional and behavioral profile compared with GR218,231 and L741,626. J Pharmacol Exp Ther 293:1063–1073PubMedGoogle Scholar
  78. Millan MJ, Gobert A, Newman-Tancredi A, Lejeune F, Cussac D, Rivet JM, Audinot V, Dubuffet T, Lavielle G (2000b) S33084, a novel, potent, selective, and competitive antagonist at dopamine D3-receptors: I. Receptorial, electrophysiological and neurochemical profile compared with GR218,231 and L741,626. J Pharmacol Exp Ther 293:1048–1062PubMedGoogle Scholar
  79. Millan MJ, Cara BD, Dekeyne A, Panayi F, Groote LD, Cistarelli L, Billiras R, Gobert A (2007) Selective blockade of dopamine D3 versus D2 receptors enhances frontocortical cholinergic transmission and social memory in rats: a parallel neurochemical and behavioural analysis. J Neurochem 100:1047–1061PubMedGoogle Scholar
  80. Millan MJ, Loiseau F, Dekeyne A, Gobert A, Flik G, Cremers TI, Rivet JM, Sicard D, Billiras R, Brocco M (2008a) S33138 (N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1]benzopyrano[3,4-c]pyrrol-2(3H)-yl)-ethyl]phenyl-acetamide), a preferential dopamine D3 versus D2 receptor antagonist and potential antipsychotic agent: III. Actions in models of therapeutic activity and induction of side effects. J Pharmacol Exp Ther 324:1212–1226PubMedGoogle Scholar
  81. Millan MJ, la Mannoury CC, Novi F, Maggio R, Audinot V, Newman-Tancredi A, Cussac D, Pasteau V, Boutin JA, Dubuffet T, Lavielle G (2008b) S33138 [N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1]-benzopyrano[3,4-c]pyrr ol-2(3H)-yl)-ethyl]phenylacetamide], a preferential dopamine D3 versus D2 receptor antagonist and potential antipsychotic agent: I. Receptor-binding profile and functional actions at G-protein-coupled receptors. J Pharmacol Exp Ther 324:587–599PubMedGoogle Scholar
  82. Millan MJ, Svenningsson P, Ashby CR Jr, Hill M, Egeland M, Dekeyne A, Brocco M, Di CB, Lejeune F, Thomasson N, Munoz C, Mocaer E, Crossman A, Cistarelli L, Girardon S, Iob L, Veiga S, Gobert A (2008c) S33138 [N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1]-benzopyrano[3,4-c]pyrr ol-2(3H)-yl)-ethyl]phenylacetamide], a preferential dopamine D3 versus D2 receptor antagonist and potential antipsychotic agent. II. A neurochemical, electrophysiological and behavioral characterization in vivo. J Pharmacol Exp Ther 324:600–611PubMedGoogle Scholar
  83. Millan MJ, Buccafusco JJ, Loiseau F, Watson DJG, Decamp E, Fone KCF, Thomasson-perret N, Hill M, Mocaer E, Schneider JS (2010) The dopamine D3 receptor antagonist, S33138, counters cognitive impairment in a range of rodent and primate procedures. Int J Neuropsychopharmacol 13:1035–1051PubMedGoogle Scholar
  84. Millan MJ, Agid Y, Brune M, Bullmore ET, Carter CS, Clayton NS, Connor R, Davis S, Deakin B, Derubeis RJ, Dubois B, Geyer MA, Goodwin GM, Gorwood P, Jay TM, Joels M, Mansuy IM, Meyer-Lindenberg A, Murphy D, Rolls E, Saletu B, Spedding M, Sweeney J, Whittington M, Young LJ (2012) Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov 11:141–168PubMedGoogle Scholar
  85. Minabe Y, Hashimoto K, Watanabe KI, Ashby CR Jr (2001) Acute and repeated administration of the selective 5-HT2A receptor antagonist M100907 significantly alters the activity of midbrain dopamine neurons: an in vivo electrophysiological study. Synapse 40:102–112PubMedGoogle Scholar
  86. Mizrahi R, Agid O, Borlido C, Suridjan I, Rusjan P, Houle S, Remington G, Wilson AA, Kapur S (2011) Effects of antipsychotics on D3 receptors: a clinical PET study in first episode antipsychotic naive patients with schizophrenia using [11C]-(+)-PHNO. Schizophr Res 131:63–68PubMedGoogle Scholar
  87. Möller HJ (2003) Management of the negative symptoms of schizophrenia: new treatment options. CNS Drugs 17:793–823PubMedGoogle Scholar
  88. Mugnaini M, Iavarone L, Cavallini P, Griffante C, Oliosi B, Savoia C, Beaver J, Rabiner EA, Micheli F, Heidbreder C, Andorn A, Pich EM, Bani M (2012) Occupancy of brain dopamine D3 receptors and drug craving: a translational approach. Neuropsychopharmacology. doi: 10.1038/npp.2012.171
  89. Newman AH, Grundt P, Nader MA (2005) Dopamine D3 receptor partial agonists and antagonists as potential drug abuse therapeutic agents. J Med Chem 48:3663–3679PubMedGoogle Scholar
  90. Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK (2004) Identification of separable cognitive factors in schizophrenia. Schizophr Res 72:29–39PubMedGoogle Scholar
  91. Olincy A, Freedman R (2012) Nicotinic mechanisms in the treatment of psychotic disorders: a focus on the α7 nicotinic receptor. Handb Exp Pharmacol 213:211–32. Springer, Heidelberg. doi: 10.1007/978-3-642-25758-2_8 Google Scholar
  92. Peleg-Raibstein D, Feldon J, Meyer U (2012) Behavioral animal models of antipsychotic drug actions. In: Gross G, Geyer M (eds) Current antipsychotics; Handb Exp Pharmacol 212. Springer, HeidelbergGoogle Scholar
  93. Piercey MF, Hoffmann WE, Smith MW, Hyslop DK (1996) Inhibition of dopamine neuron firing by pramipexole, a dopamine D3 receptor-preferring agonist: comparison to other dopamine receptor agonists. Eur J Pharmacol 312:35–44PubMedGoogle Scholar
  94. Porsolt RD, Moser PC, Castagné V (2010) Behavioral indices in antipsychotic drug discovery. J Pharmacol Exp Ther 333:632–638PubMedGoogle Scholar
  95. Pou C, la Cour CM, Stoddart LA, Millan MJ, Milligan G (2012) Functional homomers and heteromers of dopamine D2L and D3 receptors co-exist at the cell surface. J Biol Chem 287:8864–8878PubMedGoogle Scholar
  96. Reavill C, Taylor SG, Wood MD, Ashmeade T, Austin NE, Avenell KY, Boyfield I, Branch CL, Cilia J, Coldwell MC, Hadley MS, Hunter AJ, Jeffrey P, Jewitt F, Johnson CN, Jones DN, Medhurst AD, Middlemiss DN, Nash DJ, Riley GJ, Routledge C, Stemp G, Thewlis KM, Trail B, Vong AK, Hagan JJ (2000) Pharmacological actions of a novel, high-affinity, and selective human dopamine D3 receptor antagonist, SB-277011-A. J Pharmacol Exp Ther 294:1154–1165PubMedGoogle Scholar
  97. Redden L, Rendenbach-Mueller B, Abi-Saab WM, Katz DA, Goenjian A, Robieson WZ, Wang Y, Goss SL, Greco N, Saltarelli MD (2011) A double-blind, randomized, placebo-controlled study of the dopamine D3 receptor antagonist ABT-925 in patients with acute schizophrenia. J Clin Psychopharmacol 31:221–225PubMedGoogle Scholar
  98. Richtand NM (2006) Behavioral sensitization, alternative splicing, and D3 dopamine receptor-mediated inhibitory function. Neuropsychopharmacology 31:2368–2375Google Scholar
  99. Richtand NM, Woods SC, Berger SP, Strakowski SM (2001) D3 dopamine receptor, behavioral sensitization, and psychosis. Neurosci Biobehav Rev 25:427–443PubMedGoogle Scholar
  100. Rorick-Kehn LM, Johnson BG, Knitowski KM, Salhoff CR, Witkin JM, Perry KW, Griffey KI, Tizzano JP, Monn JA, McKinzie DL, Schoepp DD (2007) In vivo pharmacological characterization of the structurally novel, potent, selective mGlu2/3 receptor agonist LY404039 in animal models of psychiatric disorders. Psychopharmacology (Berl) 193:121–136Google Scholar
  101. Scatton B, Claustre Y, Cudennec A, Oblin A, Perrault G, Sanger DJ, Schoemaker H (1997) Amisulpride: from animal pharmacology to therapeutic action. Int Clin Psychopharmacol 12(Suppl 2):S29–S36PubMedGoogle Scholar
  102. Schmidt WJ, Beninger RJ (2006) Behavioural sensitization in addiction, schizophrenia, Parkinson's disease and dyskinesia. Neurotox Res 10:161–166PubMedGoogle Scholar
  103. Schoemaker H, Claustre Y, Fage D, Rouquier L, Chergui K, Curet O, Oblin A, Gonon F, Carter C, Benavides J, Scatton B (1997) Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity. J Pharmacol Exp Ther 280:83–97PubMedGoogle Scholar
  104. Schotte A, Janssen PF, Gommeren W, Luyten WH, Leysen JE (1992) Autoradiographic evidence for the occlusion of rat brain dopamine D3 receptors in vivo. Eur J Pharmacol 218:373–375PubMedGoogle Scholar
  105. Schotte A, Janssen PF, Bonaventure P, Leysen JE (1996) Endogenous dopamine limits the binding of antipsychotic drugs to D3 receptors in the rat brain: a quantitative autoradiographic study. Histochem J 28:791–799PubMedGoogle Scholar
  106. Schuetz E, Jongen-Rêlo AL, Drescher KU, Gross G, Schoemaker H (2004) The effect of the dopamine D3 receptor antagonist A-437203 on the development and expression of locomotor sensitization to quinpirole in rats. Abstr Soc Neurosci 350.1Google Scholar
  107. Searle G, Beaver JD, Comley RA, Bani M, Tziortzi A, Slifstein M, Mugnaini M, Griffante C, Wilson AA, Merlo-Pich E, Houle S, Gunn R, Rabiner EA, Laruelle M (2010) Imaging dopamine D3 receptors in the human brain with positron emission tomography, [11C]PHNO, and a selective D3 receptor antagonist. Biol Psychiatry 68:392–399PubMedGoogle Scholar
  108. SIRS (2012) The 3rd Schizophrenia International Research Society Conference, 14–18 April 2012, Florence, Italy: Summaries of oral sessions. Schizophr Res 141(1):e1–e24Google Scholar
  109. Smith AG, Neill JC, Costall B (1999) The dopamine D3/D2 receptor agonist 7-OH-DPAT induces cognitive impairment in the marmoset. Pharmacol Biochem Behav 63:201–211PubMedGoogle Scholar
  110. Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor D3 as a target for neuroleptics. Nature 347:146–151PubMedGoogle Scholar
  111. Sokoloff P, Diaz J, Le Foll B, Guillin O, Leriche L, Bezard E, Gross C (2006) The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets 5:25–43PubMedGoogle Scholar
  112. Sokoloff P, Leriche L, Diaz J, Pumain R, Louvel J (2012) Direct and indirect interactions of the dopamine D3 receptor with glutamate pathways: implications for the treatment of schizophrenia. Naunyn Schmiedebergs Arch Pharmacol: September 22 [Epub ahead of print]Google Scholar
  113. Suzuki M, Hurd YL, Sokoloff P, Schwartz JC, Sedvall G (1998) D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res 779:58–74PubMedGoogle Scholar
  114. Svensson TH (2000) Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Res Brain Res Rev 31:320–329PubMedGoogle Scholar
  115. Tost H, Alam T, Meyer-Lindenberg A (2010) Dopamine and psychosis: theory, pathomechanisms and intermediate phenotypes. Neurosci Biobehav Rev 34:689–700PubMedGoogle Scholar
  116. Tziortzi AC, Searle GE, Tzimopoulou S, Salinas C, Beaver JD, Jenkinson M, Laruelle M, Rabiner EA, Gunn RN (2011) Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy. Neuroimage 54:264–277PubMedGoogle Scholar
  117. Ukai M, Tanaka T, Kameyama T (1997) Effects of the dopamine D3 receptor agonist, R(+)-7-hydroxy-N, N-di-n-propyl-2-aminotetralin, on memory processes in mice. Eur J Pharmacol 324:147–151PubMedGoogle Scholar
  118. Unger L, Wernet W, Sokoloff P, Wicke K, Gross G (2002) In vitro characterization characterization of the selective dopamine dopamine D3 receptor antagonist A-437203. Abstr Soc Neurosci 894.5Google Scholar
  119. Ungless MA, Grace AA (2012) Are you or aren't you? Challenges associated with physiologically identifying dopamine neurons. Trends Neurosci 35(7):422–430PubMedGoogle Scholar
  120. Vauquelin G, Bostoen S, Vanderheyden P, Seeman P (2012) Clozapine, atypical antipsychotics, and the benefits of fast-off D2 dopamine receptor antagonism. Naunyn Schmiedebergs Arch Pharmacol 385:337–372PubMedGoogle Scholar
  121. Wadenberg ML, Kapur S, Soliman A, Jones C, Vaccarino F (2000) Dopamine D2 receptor occupancy predicts catalepsy and the suppression of conditioned avoidance response behavior in rats. Psychopharmacology (Berl) 150:422–429Google Scholar
  122. Watson DJ, Loiseau F, Ingallinesi M, Millan MJ, Marsden CA, Fone KC (2012a) Selective blockade of dopamine D3 receptors enhances while D2 receptor antagonism impairs social novelty discrimination and novel object recognition in rats: a key role for the prefrontal cortex. Neuropsychopharmacology 37:770–786PubMedGoogle Scholar
  123. Watson DJ, Marsden CA, Millan MJ, Fone KC (2012b) Blockade of dopamine D3 but not D2 receptors reverses the novel object discrimination impairment produced by post-weaning social isolation: implications for schizophrenia and its treatment. Int J Neuropsychopharmacol 15:471–484PubMedGoogle Scholar
  124. Wicke K, Garcia-Ladona J (2001) The dopamine D3 receptor partial agonist, BP 897, is an antagonist at human dopamine D3 receptors and at rat somatodendritic dopamine D3 receptors. Eur J Pharmacol 424:85–90PubMedGoogle Scholar
  125. Xing B, Kong H, Meng X, Wei SG, Xu M, Li SB (2010) Dopamine D1 but not D3 receptor is critical for spatial learning and related signaling in the hippocampus. Neuroscience 169:1511–1519PubMedGoogle Scholar
  126. Yarkov AV, Der TC, Joyce JN (2010) Locomotor activity induced by MK-801 is enhanced in dopamine D3 receptor knockout mice but suppression by dopamine D3/D2 antagonists does not occur through the dopamine D3 receptor. Eur J Pharmacol 627:167–172Google Scholar
  127. Young JW, Zhou X, Geyer MA (2010) Animal models of schizophrenia. Curr Top Behav Neurosci 4:391–433PubMedGoogle Scholar
  128. Young JW, Amitai N, Geyer MA (2012) Behavioral animal models of pro-cognitive treatments for schizophrenia. In: Geyer M, Gross G (eds) Novel antischizophrenia treatments; Handb Exp Pharmacol 213:39–79. Springer, Heidelberg. doi: 10.1007/978-3-642-25758-2_3 Google Scholar
  129. Zapata A, Witkin JM, Shippenberg TS (2001) Selective D3 receptor agonist effects of (+)-PD 128,907 on dialysate dopamine at low doses. Neuropharmacology 41:351–359PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gerhard Gross
    • 1
    • 2
  • Karsten Wicke
    • 1
  • Karla U. Drescher
    • 1
  1. 1.Abbott Neuroscience ResearchLudwigshafenGermany
  2. 2.Universitätsklinikum EssenUniversity of Duisburg-EssenEssenGermany

Personalised recommendations