Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 384, Issue 2, pp 115–124 | Cite as

Neuroprotective mechanisms of peroxisome proliferator-activated receptor agonists in Alzheimer’s disease

  • Rupinder K. Sodhi
  • Nirmal SinghEmail author
  • Amteshwar S. Jaggi


Alzheimer’s disease (AD) is the most common causes of dementia accounting for 50–60% of all cases. The pathological hallmarks of AD are the formation of extracellular plaques consisting of amyloid-β protein, intracellular neurofibrillary tangles of hyperphosphorylated tau proteins and presence of chronic neuroinflammation causing progressive decline in memory and cognitive functions. The current therapeutic strategies to improve memory deficits aim at preventing the formation and accumulation of amyloid-β and tau phosphorylation. Beyond the plaque and tangle-related targets, other aspects of pathophysiology including molecular transport mechanism, oxidative damage, inflammation and glucose and lipid metabolism may also provide opportunities to slow down the progression of memory loss. A novel therapeutic approach to the treatment of AD is through the exploration of nuclear receptor agonists, peroxisome proliferator-activated receptors (PPARs), which have been clinically used as antidiabetic and dyslipidemic agents. The findings that PPAR agonists may possess antiamyloidogenic, anti-inflammatory, insulin-sensitizing, and cholesterol-lowering potential suggest that they could be interesting candidates for AD drugs. Through this review, we will discuss the probable pathophysiological mechanisms that may elicit the defending role of these receptors in brains of AD patients.


Alzheimer’s disease PPAR Amyloid-beta Inflammation Cholesterol 


  1. Abbatecola AM, Lattanzio F, Molinari AM, Cioffi M, Mansi L, Rambaldi P, DiCioccio L, Cacciapuoti F, Canonico R, Paolisso G (2010) Rosiglitazone and cognitive stability in older individuals with type 2 diabetes and mild cognitive impairement. Diabetes Care 33:1706–1711PubMedCrossRefGoogle Scholar
  2. Akiyama H, Barger S, Barnum S (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421PubMedCrossRefGoogle Scholar
  3. Akiyama TE, Lambert G, Nicol CJ, Matsusue K, Peters JM, Brewer HB Jr (2004) Peroxisome proliferator-activated receptor beta/delta regulates very low density lipoprotein production and catabolism in mice on a Western diet. J Biol Chem 279:20874–20881PubMedCrossRefGoogle Scholar
  4. Barbier O, Torra IP, Duguay Y, Blanquart C, Fruchart JC, Glineur C (2002) Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 22(5):717–726PubMedCrossRefGoogle Scholar
  5. Barish GD, Narkar VA, Evans RM (2006) PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest 116:590–597PubMedCrossRefGoogle Scholar
  6. Bauer B, Hartz AM, Miller DS (2007) Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood–brain barrier. Mol Pharmacol 71:667–675PubMedCrossRefGoogle Scholar
  7. Biessels GJ, Staekenborg S, Brunner E (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5(1):64–74PubMedCrossRefGoogle Scholar
  8. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinol 137:354–366CrossRefGoogle Scholar
  9. Brewer LD, Thibault O, Staton J, Thibault V, Rogers JT, Garcia-Ramos G, Kraner S, Landfield PW, Porter NM (2007) Increased vulnerability of hippocampal neurons with age in culture: temporal association with increases in NMDA receptor current, NR2A subunit expression and recruitment of L-type calcium channels. Brain Res 1151:20–31PubMedCrossRefGoogle Scholar
  10. Brian PL, Pierre JL (2003) Cognition enhancing or neuroprotective compounds for the treatment of cognitive disorders: why? when? which? Exp Gerontol 38:119–128CrossRefGoogle Scholar
  11. Camacho IE, Serneels L, Spittaels K, Merchiers P, Dominguez D, De Strooper B (2004) Peroxisome proliferator activated receptor γ induces a clearance mechanism for the amyloid-β peptide. J Neurosci 24:10908–10917PubMedCrossRefGoogle Scholar
  12. Chung JH, Seo AY, Chung SW, Kim MK, Leeuwenburgh C, Yu BP, Chung HY (2008) Molecular mechanism of PPAR in the regulation of age related inflammation. Ageing Res Rev 7:126–136PubMedCrossRefGoogle Scholar
  13. Cimini A, Bernardo GC, Muzio D, Di Loreto S (2003) TNFα downregulates PPARδ expression in oligodendrocyte progenitor cells: implications for demyelinating diseases. Glia 41:3–14PubMedCrossRefGoogle Scholar
  14. Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of β- amyloid-stimulated proinflammatory responses and neurotoxicity by PPARγ agonists. J Neurosci 20:558–567PubMedGoogle Scholar
  15. Craft S (2006) Insulin resistance syndrome and Alzheimer disease: pathophysiologic mechanisms and therapeutic implications. Alzheimer Dis Assoc Disord 20:298–301PubMedCrossRefGoogle Scholar
  16. Craft S, Asthana S, Cook DG (2003) Insulin dose–response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology 28:809–822PubMedCrossRefGoogle Scholar
  17. de la Monte SM, Wands JR (2006) Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J Alzheimers Dis 9:167–181PubMedGoogle Scholar
  18. Dello RC, Gavrilyuk V, Weinberg G, Almeida A, Bolanos JP, Palmer J, Pelligrino D, Galea E, Feinstein DL (2003) Peroxisome proliferator-activated receptor gamma thiazolidinedione agonists increase glucose metabolism in astrocytes. J Biol Chem 278:5828–5836CrossRefGoogle Scholar
  19. Desvergne B, Wahli W (1999) Peroxisome proliferator activated receptors: nuclear control of metabolism. Endo Rev 20:649–688CrossRefGoogle Scholar
  20. Diradourian C, Girard J, Pégorier JP (2005) Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie 87:33–38PubMedCrossRefGoogle Scholar
  21. Du J, Zhang L, Liu S, Zhang C, Huang X, Li J, Zhao N, Wang Z (2009) PPAR gamma transcriptionally regulates the expression of insulin-degrading enzyme in primary neurons. Biochem Biophys Res Commun 383:485–490PubMedCrossRefGoogle Scholar
  22. Elisaf M (2002) Effects of fibrates on serum metabolic parameters. Curr Med Res Opin 18:269–276PubMedCrossRefGoogle Scholar
  23. Farris W, Mansourian S, Chang Y (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 100:162–4167CrossRefGoogle Scholar
  24. Farris W, Mansourian S, Leissring MA (2004) Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. Am J Pathol 164:1425–1434PubMedCrossRefGoogle Scholar
  25. Farris W, Leissring MA, Hemming ML (2005) Alternative splicing of human insulin-degrading enzyme yields a novel isoform with a decreased ability to degrade insulin and amyloid beta-protein. Biochem 44l:6513–6525Google Scholar
  26. Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45:120–159PubMedCrossRefGoogle Scholar
  27. Feinstein DL, Spagnolo A, Akar C, Weinberg G, Murphy P, Gavrilyuk V, Dello RC (2005) Receptor independent actions of PPAR thiazolidinediones agonists: is mitochondria function the key. Biochem Pharmacol 70:177–188PubMedCrossRefGoogle Scholar
  28. Fiévet C, Fruchart JC, Staels B (2006) PPARalpha and PPARgamma dual agonists for the treatment of type 2 diabetes and the metabolic syndrome. Curr Opin Pharmacol 6:606–614PubMedCrossRefGoogle Scholar
  29. Frolich L, Blum-Degen D, Riederer P (1999) A disturbance in the neuronal insulin receptor signal transduction in sporadic Alzheimer’s disease. Ann NY Acad Sci 893:290–293PubMedCrossRefGoogle Scholar
  30. Fuenzalida K, Quintanilla R, Ramos P, Piderit D, Fuentealba RA, Martinez G, Inestrosa NC, Bronfman M (2007) Peroxisome proliferator activated receptor gamma up-regulates the Bcl-2 antiapoptotic protein in the neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis. J Biol Chem 282:37006–37015PubMedCrossRefGoogle Scholar
  31. Gofflot F, Chartoire L, Vasseur (2007) Systemic gene expression mapping clusters nuclear receptors according to their functions in brain. Cell 131:405–418PubMedCrossRefGoogle Scholar
  32. Gold M, Alderton C, Zvartau-Hind M, Egginton S, Saunders AM, Irizarry M, Craft S, Landreth G, Linnamägi U, Sawchak S (2010) Rosiglitazone onotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement Geriatr Cogn Disord 30:131–146PubMedCrossRefGoogle Scholar
  33. Graham TL, Mookherjee C, Suckling KE, Palmer CN, Patel L (2005) The PPARdelta agonist GW0742X reduces atherosclerosis in LDLR (−/−) mice. Atherosclerosis 181:29–37PubMedCrossRefGoogle Scholar
  34. Green KN, Billing LM, Roozendaal B, Mc. Gaugh JL, La Ferala FM (2006) Glucorticoids increase amyloid-beta and tau pathology in mouse model of Alzheimer’s disease. J Neurosci 26:9047–9056PubMedCrossRefGoogle Scholar
  35. Hamilton G, Proitsi P, Jehu L (2007) Candidate gene association study of insulin signaling genes and Alzheimer’s disease: evidence for SOS2, PCK1, and PPARgamma as susceptibility loci. Am J Med Genet B Neuropsychiatr Genet 144:508–516Google Scholar
  36. Hanyu H, Sato T, Kiuchi A, Sakurai H, Iwamoto T (2009) Pioglitazone improved cognition in a pilot study on patients with Alzheimer’s disease and mild cognitive impairment with diabetes mellitus. J Am Geriatr Soc 57:177–179PubMedCrossRefGoogle Scholar
  37. Heneka MT, Klockgether T, Feinstein DL (2000) Peroxisome proliferator-activated receptor-γ ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. J Neurosci 20:6862–6867PubMedGoogle Scholar
  38. Heneka MT, Wiesinger H, Dumitrescu-Ozimek L, Riederer P, Feinstein DL, Klockgether T (2001a) Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease. J Neuropatho Exp Neurol 60:906–916Google Scholar
  39. Heneka MT, Landreth GE, Feinstein DL (2001b) Role of peroxisome proliferator-activated receptor-γ in Alzheimer’s disease. Ann Neurol 49:276–281PubMedCrossRefGoogle Scholar
  40. Heneka MT, Sastre M, Dumitrescu-Ozimek L (2005a) Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflam 2:22–27CrossRefGoogle Scholar
  41. Heneka M, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C, O’Banion K, Klockgether T, Van Leuven F, Landreth GE (2005b) Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain 128:1442–1453PubMedCrossRefGoogle Scholar
  42. Hirashima N, Etcheberrigaray R, Bergamaschi S, Racchi M, Battaini F, Binetti G, Govoni S, Alkon DL (1996) Calcium responses in human fibroblasts: a diagnostic molecular profile for Alzheimer’s disease. Neurobiol Aging 17:549–555PubMedCrossRefGoogle Scholar
  43. Hirsch RV, Zhou S, Burgess BL (2005) Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J Biol Chem 279:41197–41207CrossRefGoogle Scholar
  44. Houten SM, Auwerx J (2004) PGC-1alpha: turbocharging mitochondria. Cell 119:5–7PubMedCrossRefGoogle Scholar
  45. Huang TS, Teoh AW, Lin B, Lin DS, Roufogalis B (2009) The role of herbal PPAR modulators in the treatment of cardiometabolic syndrome. Pharmacol Res 60:195–206PubMedCrossRefGoogle Scholar
  46. Huaqi X, Debbie C, Aimee J, Douglas G, Walker Lih-Fen L, Thomas GB, Lucia I, Sue JH, Huaxi X, Wandong Z (2008) Cholesterol retention in Alzheimer’s brain is responsible for high β- and γ-secretase activities and Aβ production. Neurobiol Dis 29:422–437CrossRefGoogle Scholar
  47. Hunter RL, Choi DY, Ross SA, Bing G (2008) Protective effects afforded by pioglitazone against intrastriatal LPS in Sprague–Dawley rats. Neurosci Lett 432:198–201PubMedCrossRefGoogle Scholar
  48. Inestrosa NC, Godoy JA, Quintanilla RA, Koenig CS, Bronfman M (2005) Peroxisome proliferator-activated receptor γ is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling. Exp Cell Res 304:91–104PubMedCrossRefGoogle Scholar
  49. Jehl PC, Bastie C, Gillot I, Luquet S, Grimaldi PA (2000) Peroxisome-proliferatoractivated receptor deltamediates the effects of long-chain fatty acids on postconfluent cell proliferation. Biochem J 350: 93–98Google Scholar
  50. Jiang Q, Heneka M, Landreth GE (2008) The role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in Alzheimer’s disease: therapeutic implications. CNS Drugs 22:1–14PubMedCrossRefGoogle Scholar
  51. Kaundal RK, Sharma SS (2010) Peroxisome proliferator-activated receptor gamma agonists as neuroprotective agents. Drug News Perspect 23:241–256PubMedCrossRefGoogle Scholar
  52. Kaur B, Singh N, Jaggi AS (2009) Exploring mechanism of pioglitazone-induced memory restorative effect in experimental dementia. Fundam Clin Pharmacol 23:557–566PubMedCrossRefGoogle Scholar
  53. Kim EJ, Kwon KJ, Park JY, Lee SH, Moon CH, Baik EJ (2002) Effects of peroxisome proliferator-activated receptor agonists on LPS-induced neuronal death in mixed cortical neurons: associated with iNOS and COX-2. Brain Res 941:1–10PubMedCrossRefGoogle Scholar
  54. Knight BL, Patel DD, Humphreys SM, Wiggins D, Gibbons GF (2003) Inhibition of cholesterol absorption associated with a PPAR alpha-dependent increase in ABC binding cassette transporterA1 in mice. J Lipid Res 200:2049–2058CrossRefGoogle Scholar
  55. Koldamova R, Staufenbiel M, Lefterov I (2005) Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. J Biol Chem 280:43224–43235PubMedCrossRefGoogle Scholar
  56. Kummer MP, Heneka MT (2008) PPARs in Alzheimer’s disease. PPAR Res 20:403896–403900Google Scholar
  57. Landreth G (2007) Therapeutic use of agonists of nuclear receptor PPAR gamma in alzheimers disease. Curr Alzheimer Res 4:159–164PubMedCrossRefGoogle Scholar
  58. Landreth GE, Heneka MT (2001) Anti-inflammatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer’s disease. Neurobiol Aging 22:937–944PubMedCrossRefGoogle Scholar
  59. Landreth G, Jiang Q, Mandrekar S, Heneka M (2008) PPAR gamma agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics 5:481–489PubMedCrossRefGoogle Scholar
  60. Lee H, Shi W, Tontonoz P, Wang S, Subbanagounder G, Hedrick CC (2000) Role for peroxisome proliferator-activated receptor alpha in oxidized phospholipid induced synthesis of monocyte chemotactic protein-1 and interleukin-8 by endothelial cells. Circ Res 2000:87516–87521Google Scholar
  61. Lehrke M, Lazar M (2005) The many faces of PPARgamma. Cell 123:993–999PubMedCrossRefGoogle Scholar
  62. Li Y, Lambert MH, Xu HE (2003) Activation of nuclear receptors: a perspective from structural genomics. Structure 11:741–746PubMedCrossRefGoogle Scholar
  63. Li WZ, Li WP, Yao YY, Zhang W, Yin YY, Wu GC, Gong HL (2010) Glucocorticoids increase impairments in learning and memory due to elevated amyloid precursor protein expression and neuronal apoptosis in 12-month old mice. Eur J Pharmacol 628:108–115PubMedCrossRefGoogle Scholar
  64. Lincoff AM, Wolski K, Nicholls SJ (2007) Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomised trials. JAMA 298:1180–1188PubMedCrossRefGoogle Scholar
  65. Luquet S, Gaudel C, Holst D, Lopez-Soriano J, Jehl-Pietri C, Fredenrich A (2005) Roles of PPAR delta in lipid absorption and metabolism: a new target for the treatment of type 2 diabetes. Biochim Biophys Acta 1740:313–317PubMedGoogle Scholar
  66. Mancuso M, Orsucci D, Siciliano G, Murri L (2008) Mitochondria, mitochondrial DNA and Alzheimer’s disease. What comes first? Curr Alzheimer Res 5:457–468PubMedCrossRefGoogle Scholar
  67. Messier C, Teutenberg K (2005) The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer’s disease. Neural Plast 12:311–328PubMedCrossRefGoogle Scholar
  68. Michalik L, Wahli W (2007) Peroxisome proliferator-activated receptors (PPARs) in skin health, repair and disease. Biochim Biophys Acta 1771:991–998PubMedGoogle Scholar
  69. Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ (2006) International Union of Pharmacology LXI. Peroxisome proliferator activated receptors. Pharmacol Rev 58:726–741PubMedCrossRefGoogle Scholar
  70. Micheal SR, Pual SA (2009) Recent developments in Alzheimer’s diseases therapeutics. BMC Med 7(Supp7):S7Google Scholar
  71. Mootha VK, Lindgren CM, Eriksson KF (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273PubMedCrossRefGoogle Scholar
  72. Moreno S, Farioli-vecchioli S, Cer’ u MP (2004) Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neurosci 123:1131–1145CrossRefGoogle Scholar
  73. Mosconi L, Tsui WH, De Santi S (2005) Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurol 64:1860–1867CrossRefGoogle Scholar
  74. Nicolakakis N, Hamel E (2010) The nuclear receptor PPAR gamma as a therapeutic target for cerebrovascular and brain dysfunction in Alzheimer’s disease. Front Aging Neurosci 2:pii 21PubMedGoogle Scholar
  75. Nissen SE, Wolski K (2007) Effect of Rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471PubMedCrossRefGoogle Scholar
  76. Notkola IL, Sulkava R, Pekkanen J (1998) Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer’s disease. Neuroepidemiol 17:14–20CrossRefGoogle Scholar
  77. Nuclear Receptors Nomenclature Committee (1999) A unified nomenclature system for the nuclear receptor superfamily. Cell 97:161–163CrossRefGoogle Scholar
  78. Pakala R, Kuchulakanti P, Rha SW, Cheneau E, Baffour R, Waksman R (2004) Peroxisome proliferator-activated receptor gamma: its role in metabolic syndrome. Cardiovasc Radiat Med 5:97–103PubMedCrossRefGoogle Scholar
  79. Pancani T, Phelps JT, Searcy JL, Kilgore MW, Chen KC, Porter NM, Thibault O (2009) Distinct modulation of voltage-gated and ligand-gated Ca2+ currents by PPAR-gamma agonists in cultured hippocampal neurons. J Neurochem 109:1800–1811PubMedCrossRefGoogle Scholar
  80. Panza F, Capurso C, D’Introno A (2006) Serum total cholesterol as a biomarker for Alzheimer’s disease: mid-life or late-life determinations? Exp Gerontol 41:805–806PubMedCrossRefGoogle Scholar
  81. Pathan AR, Viswanad B, Sonkusare SK, Ramarao P (2006) Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. Life Sci 79:2209–2216PubMedCrossRefGoogle Scholar
  82. Pathan AR, Gaikwad AB, Viswanad B, Ramarao P (2008) Rosiglitazone attenuates the cognitive deficits induced by high fat diet feeding in rats. Eur J Pharmacol 589:176–179PubMedCrossRefGoogle Scholar
  83. Patricia WS, Russel H, Swerdlow B, Angela MH (2008) Alzheimer’s disease. In: Joseph TD, Talbert RL, Yee GC, Matzke GR, Wells BG (eds) Pharmacotherapy: a pathophysiologic approach. McGraw Hill, New York, pp 1051–1065Google Scholar
  84. Pedersen WA, Flynn ER (2004) Insulin resistance contributes to aberrant stress responses in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis 17:500–506PubMedCrossRefGoogle Scholar
  85. Pedersen W, Mc. Millan P, Kulstad J (2006) Rosiglitazone attenuates learning and memory deficits in Tg 2576 alzheimers mice. Exp Neurol 199:265–273PubMedCrossRefGoogle Scholar
  86. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360PubMedCrossRefGoogle Scholar
  87. Qingguang J, Daniel L, Shewta M, Brandy W, Paige C, Noam Z, Mann K, Lamb B, Willson TM, Collins JL, Richardson JC, Smith JD, Comery TA, Riddell D, Holtzman DM, Tontonoz P, Landreth GE (2008) ApoE promotes the proteolytic degradation of Aβ. Neuron 58:681–693CrossRefGoogle Scholar
  88. Rangwala SM, Lazar MA (2004) Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol Sci 25:331–336PubMedCrossRefGoogle Scholar
  89. Risner ME, Saunders AM, Altman JF (2006) Efficacy of rosiglitazone in a genetically defined population with mild to moderate Alzheimer’s disease. Pharmacogenomics J 6:246–250PubMedGoogle Scholar
  90. Rosenfeld MG, Lunyak VV, Glass CK (2006) Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 20:1405–1428PubMedCrossRefGoogle Scholar
  91. Sastre M, Klockgether T, Heneka MT (2006) Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int J Dev Neurosci 24:167–176PubMedCrossRefGoogle Scholar
  92. Sato T, Hanyu H, Hirao K, Kanetaka H, Sakurai H, Iwamoto T (2009) Efficacy of PPAR-gamma agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging. doi: 10.1016/j.neurobiolaging.2009.10.009
  93. Sly LM, Krzesicki RF, Brashler JR (2001) Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res Bull 56:581–588PubMedCrossRefGoogle Scholar
  94. Staels B, Maes M, Zambon A (2008) Fibrates and future PPARalpha agonists in the treatment of cardiovascular disease. Nat Clin Pract Cardiovasc Med 5:542–553PubMedCrossRefGoogle Scholar
  95. Strum JC, Sehee R, Virley D (2007) Rosiglitazone induces mitochondrial biogenesis in mouse brain. J Alzheimers Dis 11:45–51PubMedGoogle Scholar
  96. Sundararajan S, Jiang Q, Heneka M, Landreth G (2006) PPARgamma as a therapeutic target in central nervous system diseases. Neurochem Int 49:136–144PubMedCrossRefGoogle Scholar
  97. Swerdlow RH, Khan SM (2009) The Alzheimer’s disease mitochondrial cascade hypothesis: an update. Exp Neurol 18:308–315CrossRefGoogle Scholar
  98. Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20:S265–S279PubMedGoogle Scholar
  99. Sznaidman ML, Haffner CD, Maloney PR, Fivush A, Chao E, Goreham D (2003) Novel selective small molecule agonists for peroxisome proliferator activated receptor delta (PPARdelta)—synthesis and biological activity. Bioorg Med Chem Lett 13:1517–1521PubMedCrossRefGoogle Scholar
  100. Tan NS, Michalik L, Noy N, Yasmin R, Pacot C, Heim M (2001) Critical roles of PPAR beta/delta in keratinocyte response to inflammation. Genes Dev 15:3263–3277PubMedCrossRefGoogle Scholar
  101. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) PPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8:1224–1234PubMedCrossRefGoogle Scholar
  102. Wahrle SE, Jiang H, Parsadanian M (2005) Deletion of Abca1 increases Abeta deposition in the PDAPP transgenic mouse model of Alzheimer disease. J Biol Chem 280:43236–43242PubMedCrossRefGoogle Scholar
  103. Wahrle SE, Jiang H, Parsadanian M (2008) Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J Clin Invest 118:671–682PubMedGoogle Scholar
  104. Wanger KD, Wanger N (2010) Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) acts as regulator of metabolism linked to multiple cellular functions. Pharmacol Therapeu 125:425–435Google Scholar
  105. Watson GS, Cholerton BA, Reger MA (2005) Preserved cognition in patients with early Alzheimers and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 13:950–958PubMedGoogle Scholar
  106. Weggen S, Rogers M, Eriksen J (2007) NSAIDs: small molecules for prevention of Alzheimer’s disease or precursors for future drug development? Trends Pharmacol Sci 28:536–543PubMedCrossRefGoogle Scholar
  107. Welch JS, Ricote M, Akiyama TE, Gonzalez FJ, Glass CK (2003) PPARgamma and PPARdelta negatively regulate specific subsets of lipopolysaccharide and IFN-gamma target genes in macrophages. Proc Natl Acad Sci USA 100:6712–6717PubMedCrossRefGoogle Scholar
  108. Woods JM, Tanen M, Figueroa DJ (2003) Localization of PPAR delta in murine central nervous system: expression in oligodendrocytes and neurons. Brain Res 975:10–21PubMedCrossRefGoogle Scholar
  109. Yan Q, Zhang J, Liu H (2003) Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci 23:7504–7509PubMedGoogle Scholar
  110. Yu S, Reddy JK (2007) Transcription coactivators for peroxisome proliferator activated receptors. Biochim Biophys Acta 1771:936–951PubMedGoogle Scholar
  111. Yu S, Jun Y, Tae-wan K, Alan R (2003a) Expression of Liver X target genes decreases cellular amyloid beta peptide secretion. J Biol Chem 278:27688–27694CrossRefGoogle Scholar
  112. Yu S, Rao S, Reddy JK (2003b) Peroxisome proliferator-activated receptors, fatty acid oxidation, steatohepatitis and hepatocarcinogenesis. Curr Mol Med 3:561–572PubMedCrossRefGoogle Scholar
  113. Zhao X, Ou Z, Grotta JC, Waxham N, Aronowski J (2006) Peroxisome-proliferator-activated receptor-gamma (PPARgamma) activation protects neurons from NMDA excitotoxicity. Brain Res 1073:460–469PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Rupinder K. Sodhi
    • 1
  • Nirmal Singh
    • 1
    Email author
  • Amteshwar S. Jaggi
    • 1
  1. 1.Department of Pharmaceutical Sciences and Drug ResearchPunjabi UniversityPatialaIndia

Personalised recommendations