Skip to main content

Advertisement

Log in

Wound healing activity of carbon monoxide liberated from CO-releasing molecule (CO-RM)

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Wound microenvironment presents widespread oxidant stress, inflammation, and onslaught of apoptosis. Carbon monoxide (CO) exerts pleiotropic cellular effects by modulating intracellular signaling pathways which translate into cellular protection against oxidative stress, inflammation, and apoptosis. CO-releasing molecules (CO-RMs) deliver CO in a controlled manner without altering carboxyhemoglobin levels. This study observed a potential therapeutic value of CO in the wound healing by using tricarbonyldichlororuthenium (II) dimer (CO-releasing molecule (CO-RM)-2), as one of the novel CO-releasing agent. The effect of CO-RM-2 treatment was studied on wound contraction, glucosamine, hydroxyproline levels, and mRNA of cytokines/adhesion molecule in rats using a full-thickness cutaneous wound model and angiogenesis in chick chorioallantoic membrane (CAM) model. CO-RM-2 treatment increased cellular proliferation and collagen synthesis as evidenced by the increase in wound contraction and hydroxyproline and glucosamine contents. The mRNA expression of cytokines endorsed fast healing, as was indicated by the inhibition of pro-inflammatory adhesion molecules such as ICAM-1 and cytokine TNF-α and upregulation of anti-inflammatory cytokine IL-10. An ELISA assay of IL-10 and TNF-α cytokines revealed pro-healing modulation in excision wound by CO-RM-2 treatment. CO-RM significantly promoted the angiogenesis as compared to the iCO-RM group in vitro in CAM model demonstrating pro-angiogenic effects of CO-RM-2 in wound healing process. These results indicate that CO-RM-2 may have a potential application in the management of recalcitrant/obstinate wounds wherein, active wound healing is desired. This study also opens up a new area of research for the synthesis of novel CO-releasing molecules to be used for such purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abraham NG, Kappas A (2008) Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 60:79–127

    Article  PubMed  CAS  Google Scholar 

  • Ahanger AA, Prawez S, Leo MDM, Kathirvel K, Kumar D, Tandan SK, Malik JK (2010) Pro-healing potential of hemin: an inducer of heme oxygenase-1. Eur J Pharmacol 645:165–170

    Article  PubMed  CAS  Google Scholar 

  • Amano H, Hayashi I, Yoshida S, Yoshimura H, Majima M (2002) Cyclooxygenase-2 and adenylate cyclase/protein kinase. A signaling pathway enhances angiogenesis through induction of vascular endothelial growth factor in rat sponge implants. Human Cell 15:13–24

    Article  PubMed  Google Scholar 

  • Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    PubMed  CAS  Google Scholar 

  • Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N (2003) Angiogenesis assays: a critical overview. Clin Chem 49:32–40

    Article  PubMed  CAS  Google Scholar 

  • Brouard S, Otterbein LE, Anrather J, Tobiasch E, Bach FH, Choi AM, Soares MP (2000) Carbon monoxide generated by heme oxygenase-1 suppresses endothelial cell apoptosis. J Exp Med 192:1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Campos AC, Groth AK, Branco AB (2008) Assessment and nutritional aspects of wound healing. Curr Opin Clin Nutr Metabol Care 11:281–288

    Article  Google Scholar 

  • Carmeliet P, Luttun A (2001) The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis. Thromb Haemost 86:289–297

    PubMed  CAS  Google Scholar 

  • Cepinkas G, Katada K, Bihari A, Potter FR (2008) Carbon monoxide liberated from carbon monoxide-releasing molecule CO-RM-2 attenuates inflammation in the liver of septic mice. Am J Physiol-Gastr L 294:G184–G191

    Google Scholar 

  • Chin BY, Jiang G, Wegiel B, Wang HJ, Macdonald T, Zhang XC, Gallo D, Cszimadia E, Bach FH, Lee PJ, Otterbein LE (2007) Hypoxia-inducible factor 1alpha stabilization by carbon monoxide results in cytoprotective preconditioning. Proc Natl Acad Sci USA 104(12):5109–5114

    Article  PubMed  CAS  Google Scholar 

  • Clark JE, Naughton P, Shurey S, Green CJ, Johnson TR, Mann BE, Foresti R, Motterlini R (2003) Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ Res 93:e2–e8

    Article  PubMed  CAS  Google Scholar 

  • Dal-Secco D, Paron JA, de Oliveira SHP, Silva SH, de Queiroz CF (2003) Neutrophil migration in inflammation: nitric oxide inhibits rolling, adhesion and induces apoptosis. Nitric Oxide 9:153–164

    Article  PubMed  CAS  Google Scholar 

  • Defazio G, Nico B, Trojano M, Ribatti D, Giorelli M, Ricchiuti F, Martino D, Roncali L, Livrea P (2000) Inhibition of protein kinase C counteractsTNF-α-induced ICAM-1expression and fluid phase endocytosis on brain microvascular endothelial cells. Brain Res 863:245–248

    Article  PubMed  CAS  Google Scholar 

  • Dulak J, Deshane J, Jozkowicz A, Agarwal A (2008) Heme oxygenase-1 and carbon monoxide in vascular pathobiology: focus on angiogenesis. Circulation 117:231–241

    Article  PubMed  CAS  Google Scholar 

  • Favia G, Mariggiò MA, Maiorano E, Cassano A, Capodiferro S, Ribatti D (2008) Accelerated wound healing of oral soft tissues and angiogenic effect induced by a pool of aminoacids combined to sodium hyaluronate (AMINOGAM). J Biol Reg Homeos Ag 22:109–116

    CAS  Google Scholar 

  • Ferrara N (1999) Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77:527–543

    Article  PubMed  CAS  Google Scholar 

  • Foresti R, Hammad J, Clark JE, Johnson TR, Mann BE, Friebe A, Green CJ, Motterlini R (2004) Vasoactive properties of CO-RM-3, a novel water-soluble carbon monoxide-releasing molecule. Br J Pharmacol 142:453–460

    Article  PubMed  CAS  Google Scholar 

  • Goebel U, Siepe M, Mecklenburg A, Stein P, Roesslein M, Schwer CI, Schmidt R, Doenst T, Geiger KK, Pahl HL, Schlensak C, Loop T (2008) Carbon monoxide inhalation reduces pulmonary inflammatory response during cardiopulmonary bypass in pigs. Anesthesiology 108:1025–1036

    Article  PubMed  CAS  Google Scholar 

  • Grochot-Przeczek A, Lach R, Mis J, Skrzypek K, Gozdecka M, Sroczynska P, Dubiel M, Rutkowski A, Kozakowska M, Zagorska A, Walczynski J, Was H, Kotlinowski J, Drukala J, Kurowski K, Kieda C, Herault Y, Dulak J, Jozkowicz A (2009) Heme oxygenase-1 accelerates cutaneous wound healing in mice. PLoS One 4:e5803

    Article  PubMed  Google Scholar 

  • Guo Y, Stein AB, Wu WJ, Tan W, Zhu X, Li QH et al (2004) Administration of CO-releasing molecule at the time of reperfusion reduces infarct size in vivo. Am J Physiol-Heart C 286:H1649–H1653

    Article  CAS  Google Scholar 

  • Han YP, Tuan TL, Wu H, Hughes M, Garner WL (2001) TNF-alpha stimulates activation of pro-MMP2 in human skin through NF-(kappa)B mediated induction of MT1-MMP. J Cell Sci 114(Pt 1):131–139

    PubMed  CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 9:353–364

    Article  Google Scholar 

  • Jozkowicz A, Huk I, Nigisch A, Weigel G, Dietrich W, Motterlini R, Dulak J (2003) Heme oxygenase and angiogenic activity of endothelial cells: stimulation by CO and inhibition by tin protoporphyrin IX. Antioxid Redox Signal 5:155–162

    Article  PubMed  CAS  Google Scholar 

  • Kim HP, Ryter SW, Choi AM (2006) CO as cellular signaling molecule. Ann Rev Pharmacol Toxicol 46:411–449

    Article  CAS  Google Scholar 

  • Li WW, Li VW, Tsakayannis D (2001) Angiogenesis therapies. Concepts, clinical trials, and considerations for new drug development. In: Fan T-PD, Kohn EC (eds) The new angiotherapy. Humana, Totowa, NJ, pp 547–571

    Chapter  Google Scholar 

  • Li WW, Tsakayannis MD, Li MVD (2003) Angiogenesis: a control point for normal and delayed wound healing. Contemp Surg 1:5–11

    Google Scholar 

  • Livak KJ, Schmitten TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta (CT)). Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lobb RR, Alderman EM, Fett JW (1985) Induction of angiogenesis by bovine brain derived class I heparin binding growth factor. Biochemistry 24:4970–4973

    Google Scholar 

  • Loboda A, Jazwa A, Grochot-Przeczek A, Rutkowski AJ, Cisowski J, Agarwal A, Jozkowicz A, Dulak J (2008) Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 10:1767–1812

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Martin A, Komada MR, Sane DC (2003) Abnormal angiogenesis in diabetes mellitus. Med Res Rev 23:117–145

    Article  PubMed  CAS  Google Scholar 

  • Mileski WJ, Burkhart D, Hunt JL, Kagan RJ, Saffle JR, Herndon DN et al (2003) Clinical effects of inhibiting leukocyte adhesion with monoclonal antibody to intercellular adhesion molecule-1 (enlimomab) in the treatment of partial- thickness burn injury. J Trauma 54:950–958

    Article  PubMed  Google Scholar 

  • Moore KW, De Waal MR, Coffman R, O’garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  PubMed  CAS  Google Scholar 

  • Moore BA, Overhaus M, Whitcomb J, Ifedigbo E, Choi AM, Otterbein LE et al (2005) Brief inhalation of carbon monoxide protects rodent and swine from postoperative ileus. Crit Care Med 33:1317–1326

    Article  PubMed  CAS  Google Scholar 

  • Morse D, Pischke SE, Zhou Z, Dvis RJ, Flavell RA, Loop T, Otterbein SL, Otterbein LE, Choi AM (2003) Suppression of inflammatory cytokine production by carbon monoxide involves JNK pathway and AP-1. J Biol Chem 278:36993–36998

    Article  PubMed  CAS  Google Scholar 

  • Motterlini R, Mann BE, Johnson TR, Clark JE, Foresti R, Green CJ (2003) Bioactivity and pharmacological actions of carbon monoxide-releasing molecules. Curr Pharma Des 9:2525–2539

    Article  CAS  Google Scholar 

  • Motterlini R, Sawle P, Hammad J, Bains S, Alberto R, Foresti R, Green CJ (2005) CO-RM-A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J 19:284–286

    PubMed  CAS  Google Scholar 

  • Moulin V, Auger FA, Garel D, German L (2000) Role of wound healing myofiroblasts on re-epithelialisation of human skin. Burns 26:3–12

    Article  PubMed  CAS  Google Scholar 

  • Niemisto A, Dunmire V, Yli-Harja O, Zhang W, Shmulevich I (2005) Robust quantification of in-vitro angiogenesis through image analysis. IEEE Trans Med Imaging 24:549–553

    Article  PubMed  Google Scholar 

  • Ott MC, Scott JR, Bihari A, Badhwar A, Otterbein LE, Gray DK, Harris KA, Potter RF (2005) Inhalation of carbon monoxide prevents liver injury and inflammation following hind limb ischemia/reperfusion. FASEB J 19:106–108

    PubMed  CAS  Google Scholar 

  • Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6:422–428

    Article  PubMed  CAS  Google Scholar 

  • Otterbein LE, Soares M, Yamashita K, Bach FH (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol 24:449–455

    Article  PubMed  CAS  Google Scholar 

  • Peranteau WH, Zhang L, Muvarak N, Badillo AT, Radu A, Zoltick FW, Liechty KW (2008) IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation. J Invest Dermatol 128:1852–1860

    Article  PubMed  CAS  Google Scholar 

  • Rahman A, True AL, Anwar KN, Ye DR, Voyno-Yasenetskaya AT, Malik BA (2002) Gaq and Gbg regulate PAR-1 signaling of thrombin-induced NF-ĸ B activation and ICAM-1 transcription in endothelial cells. Circ Res 91:398–405

    Article  PubMed  CAS  Google Scholar 

  • Rees M, Hague S, Oehler MK, Bicknell R (1999) Regulation of endometrial angiogenesis. Climacteric 2:52–58

    Article  PubMed  CAS  Google Scholar 

  • Rodgers PA, Vreman HJ, Dennery PA, Stevenson DK (1994) Source of carbon monoxide (CO) in biological system and applications of CO detection technologies. Semin Perinatol 18:2–10

    PubMed  CAS  Google Scholar 

  • Rodriguez AI, Gangopadhyay A, Kelley EE, Pagano PJ, Zuckerbraun BS, Bauer PM (2010) HO-1 and CO decrease platelet-derived growth factor-induced vascular smooth muscle cell migration via inhibition of Nox1. Arterioscler Thromb Vasc Biol 30:98–104

    Article  PubMed  CAS  Google Scholar 

  • Rondle CJ, Morgan WI (1955) The determination of glucosamine and galactosamine. Biochem J 61:586–589

    PubMed  CAS  Google Scholar 

  • Ryter S, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic application. Physiol Rev 86:583–650

    Article  PubMed  CAS  Google Scholar 

  • Sawle P, Foresti R, Mann BE, Johnson TR, Green CJ, Motterlini R (2005) Carbon monoxide-releasing molecules (CO-RMs attenuate) the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. Brit J Pharmacol 145:800–810

    Article  CAS  Google Scholar 

  • Shinozaki M, Okada Y, Kitano A, Ikeda K, Saika S, Shinozaki M (2009) Impaired cutaneous wound healing with excess granulation tissue formation in TNF-α-null mice. Arch Dermatol Res 301:531–537

    Article  PubMed  CAS  Google Scholar 

  • Singer AJ, Clark RA (1999) Cutaneous wound healing. N Eng J Med 341:738–746

    Article  CAS  Google Scholar 

  • Staton CA, Stribbling SM, Tazzyman S, Hughes R, Brown NJ, Lewis CE (2004) Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol 85:233–248

    Article  PubMed  CAS  Google Scholar 

  • Stefan W, Ryter S, Morse D, Augustine MK (2007) Carbon monoxide and bilirubin: potential therapies for pulmonary/vascular injury and disease. Am J Resp Cell Mol 36:75–182

    Google Scholar 

  • Sun B, Sun Z, Jin Q, Chen X (2008) CO-releasing molecules (CO-RM-2)-liberated CO attenuates leukocytes infiltration in the renal tissue of thermally injured mice. Int J Biol Sci 4:176–183

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama K, Naito Y, Takagi T, Mizushima K, Hayashi N, Harusato A, Hirata I, Omatsu T, Handa O, Ishikawa T, Yagi N, Kokura S, Yoshikawa T (2010) Carbon monoxide enhance colonic epithelial restitution via FGF15 derived from colonic myofibroblasts. Biochem Biophys Res Commun 391(1):1122–1126

    Article  PubMed  CAS  Google Scholar 

  • Urquhart P, Rosignoli G, Cooper D, Motterlini R, Perretti M (2007) Carbon monoxide-releasing molecules modulate leukocyte-endothelial interactions under flow. J Pharmacol Exp Ther 321:656–662

    Article  PubMed  CAS  Google Scholar 

  • Wagener FA, van Beurden HE, von den Hoff JW, Adema GJ, Figdor CG (2003) The heme–heme oxygenase system: a molecular switch in wound healing. Blood 102:521–528

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Chen P, de Bruyn M, Zhang W, Bremer E, Helfrich W (2010) Carbon monoxide-releasing molecule-2 (CORM-2) attenuates acute hepatic ischemia reperfusion injury in rats. BMC Gastroenterology 10:42. doi:10.1186/1471-230X-10-42

    Article  PubMed  Google Scholar 

  • Woessner JF Jr (1961) The determination of hydroxyproline in tissue and protein sample containing small proportions of this imino acid. Arch Biochem Biophys 93:440–447

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Shan P, Alam J, Davis RJ, Flavell RA, Lee PJ (2003) Carbon monoxide modulates Fas/Fas ligand, caspases and Bcl-2 family proteins via the p38α mitogen-activated protein kinase pathway during ischemia–reperfusion lung injury. J Biol Chem 278:22061–22070

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. M.C. Sharma, Director, Dr. D. Das, Joint Director (Academic), and Dr. G.C. Ram, Scientific Coordinator of the Institute for providing necessary facilities to conduct the study.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahanger, A.A., Prawez, S., Kumar, D. et al. Wound healing activity of carbon monoxide liberated from CO-releasing molecule (CO-RM). Naunyn-Schmiedeberg's Arch Pharmacol 384, 93–102 (2011). https://doi.org/10.1007/s00210-011-0653-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0653-7

Keywords

Navigation