Effects of statins on matrix metalloproteinases and their endogenous inhibitors in human endothelial cells

  • Tatiane C. Izidoro-Toledo
  • Danielle A. Guimaraes
  • Vanessa A. Belo
  • Raquel F. Gerlach
  • Jose Eduardo Tanus-Santos
Original Article

Abstract

Statins exert anti-inflammatory effects and downregulate matrix metalloproteinases (MMPs) expression, thus contributing to restore cardiovascular homeostasis in cardiovascular diseases. We aimed at comparing the effects of different statins (simvastatin, atorvastatin, and pravastatin) on MMP-2, MMP-9, tissue inhibitors of metalloproteinases (TIMP)-1, TIMP-2, and MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios released by human umbilical vein endothelial cells (HUVEC) stimulated by phorbol myristate acetate (PMA). HUVECs were incubated with statins (0.1–10 μM) for 12 h before stimulation with PMA 100 nM. Monolayers were used to perform cell viability assays and the supernatants were collected to determine MMPs and TIMPs levels by gelatin zymography and/or enzyme immunoassay. While treatment with PMA increased MMP-9 and TIMP-1 levels (by 556% and 159%, respectively; both P < 0.05), it exerted no effects on MMP-2 and TIMP-2 levels. Simvastatin and atorvastatin, but not pravastatin, attenuated PMA-induced increases in MMP-9 levels (P < 0.05). Only atorvastatin decreased baseline MMP-2 levels significantly (P < 0.05). We found no effects on TIMP-2 levels. Simvastatin and atorvastatin, but not pravastatin, decreased MMP-9/TIMP-1 ratio significantly (both P < 0.05), whereas atorvastatin and pravastatin, but not simvastatin, decreased MMP-2/TIMP-2 ratio significantly (both P < 0.05). Our data support the notion that statins with different physicochemical features exert variable effects on MMP/TIMP ratios (which reflect net MMP activity). Our results suggest that more lipophilic statins (simvastatin and atorvastatin), but not the hydrophilic statin pravastatin, downregulate net MMP-9 activity. However, atorvastatin and pravastatin may downregulate net MMP-2 activity. The clinical implications of the present findings deserve further investigation.

Keywords

Statins Matrix metalloproteinases Endothelial cell 

References

  1. Barter MJ, Hui W, Lakey RL, Catterall JB, Cawston TE, Young DA (2010) Lipophilic statins prevent matrix metalloproteinase-mediated cartilage collagen breakdown by inhibiting protein geranylgeranylation. Ann Rheum Dis 69:2189–2198PubMedCrossRefGoogle Scholar
  2. Bellosta S, Via D, Canavesi M, Pfister P, Fumagalli R, Paoletti R, Bernini F (1998) Hmg-coa reductase inhibitors reduce mmp-9 secretion by macrophages. Arterioscler Thromb Vasc Biol 18(11):1671–1678PubMedGoogle Scholar
  3. Belo VA, Souza-Costa DC, Lana CM, Caputo FL, Marcaccini AM, Gerlach RF, Bastos MG, Tanus-Santos JE (2009) Assessment of matrix metalloproteinase (mmp)-2, mmp-8, mmp-9, and their inhibitors, the tissue inhibitors of metalloproteinase (timp)-1 and timp-2 in obese children and adolescents. Clin Biochem 42(10–11):984–990PubMedCrossRefGoogle Scholar
  4. Castro MM, Rizzi E, Figueiredo-Lopes L, Fernandes K, Bendhack LM, Pitol DL, Gerlach RF, Tanus-Santos JE (2008) Metalloproteinase inhibition ameliorates hypertension and prevents vascular dysfunction and remodeling in renovascular hypertensive rats. Atherosclerosis 198(2):320–331PubMedCrossRefGoogle Scholar
  5. Castro MM, Rizzi E, Prado CM, Rossi MA, Tanus-Santos JE, Gerlach RF (2010) Imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases in hypertensive vascular remodeling. Matrix Biol 29(3):194–201PubMedCrossRefGoogle Scholar
  6. Castro MM, Rizzi E, Rodrigues GJ, Ceron CS, Bendhack LM, Gerlach RF, Tanus-Santos JE (2009) Antioxidant treatment reduces matrix metalloproteinase-2-induced vascular changes in renovascular hypertension. Free Radic Biol Med 46(9):1298–1307PubMedCrossRefGoogle Scholar
  7. Chase AJ, Newby AC (2003) Regulation of matrix metalloproteinase (matrixin) genes in blood vessels: a multi-step recruitment model for pathological remodelling. J Vasc Res 40(4):329–343PubMedCrossRefGoogle Scholar
  8. Chow AK, Cena J, Schulz R (2007) Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol 152(2):189–205PubMedCrossRefGoogle Scholar
  9. Corpataux JM, Naik J, Porter KE, London NJ (2005) A comparison of six statins on the development of intimal hyperplasia in a human vein culture model. Eur J Vasc Endovasc Surg 29(2):177–181PubMedCrossRefGoogle Scholar
  10. Corsini A, Bellosta S, Baetta R, Fumagalli R, Paoletti R, Bernini F (1999) New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther 84(3):413–428PubMedCrossRefGoogle Scholar
  11. Dollery CM, McEwan JR, Henney AM (1995) Matrix metalloproteinases and cardiovascular disease. Circ Res 77(5):863–868PubMedGoogle Scholar
  12. Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90(3):251–262PubMedGoogle Scholar
  13. Gerlach RF, Demacq C, Jung K, Tanus-Santos JE (2007) Rapid separation of serum does not avoid artificially higher matrix metalloproteinase (mmp)-9 levels in serum versus plasma. Clin Biochem 40(1–2):119–123PubMedCrossRefGoogle Scholar
  14. Gerlach RF, Uzuelli JA, Souza-Tarla CD, Tanus-Santos JE (2005) Effect of anticoagulants on the determination of plasma matrix metalloproteinase (mmp)-2 and mmp-9 activities. Anal Biochem 344(1):147–149PubMedCrossRefGoogle Scholar
  15. Goldberg GI, Strongin A, Collier IE, Genrich LT, Marmer BL (1992) Interaction of 92-kda type iv collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem 267(7):4583–4591PubMedGoogle Scholar
  16. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74(2):111–122PubMedGoogle Scholar
  17. Goncalves FM, Jacob-Ferreira AL, Gomes VA, Casella-Filho A, Chagas AC, Marcaccini AM, Gerlach RF, Tanus-Santos JE (2009) Increased circulating levels of matrix metalloproteinase (mmp)-8, mmp-9, and pro-inflammatory markers in patients with metabolic syndrome. Clin Chim Acta 403(1–2):173–177PubMedCrossRefGoogle Scholar
  18. Hah N, Lee ST (2003) An absolute role of the pkc-dependent nf-kappab activation for induction of mmp-9 in hepatocellular carcinoma cells. Biochem Biophys Res Commun 305(2):428–433PubMedCrossRefGoogle Scholar
  19. Hurks R, Hoefer IE, Vink A, Pasterkamp G, Schoneveld A, Kerver M, de Vries JP, Tangelder MJ, Moll FL (2010) Different effects of commonly prescribed statins on abdominal aortic aneurysm wall biology. Eur J Vasc Endovasc Surg 39(5):569–576PubMedCrossRefGoogle Scholar
  20. Ikeda U, Shimpo M, Ohki R, Inaba H, Takahashi M, Yamamoto K, Shimada K (2000) Fluvastatin inhibits matrix metalloproteinase-1 expression in human vascular endothelial cells. Hypertension 36(3):325–329PubMedGoogle Scholar
  21. Jacob-Ferreira AL, Palei AC, Cau SB, Moreno H Jr, Martinez ML, Izidoro-Toledo TC, Gerlach RF, Tanus-Santos JE (2010) Evidence for the involvement of matrix metalloproteinases in the cardiovascular effects produced by nicotine. Eur J Pharmacol 627(1–3):216–222PubMedCrossRefGoogle Scholar
  22. Jakobisiak M, Bruno S, Skierski JS, Darzynkiewicz Z (1991) Cell cycle-specific effects of lovastatin. Proc Natl Acad Sci U S A 88(9):3628–3632PubMedCrossRefGoogle Scholar
  23. Kamio K, Liu XD, Sugiura H, Togo S, Kawasaki S, Wang X, Ahn Y, Hogaboam C, Rennard SI (2010) Statins inhibit matrix metalloproteinase release from human lung fibroblasts. Eur Respir J 35(3):637–646PubMedCrossRefGoogle Scholar
  24. Kandasamy AD, Chow AK, Ali MA, Schulz R (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85(3):413–423PubMedCrossRefGoogle Scholar
  25. Kimata M, Ishizaki M, Tanaka H, Nagai H, Inagaki N (2006) Production of matrix metalloproteinases in human cultured mast cells: involvement of protein kinase c-mitogen activated protein kinase kinase-extracellular signal-regulated kinase pathway. Allergol Int 55(1):67–76PubMedCrossRefGoogle Scholar
  26. Lacchini R, Silva PS, Tanus-Santos JE (2010) A pharmacogenetics-based approach to reduce cardiovascular mortality with the prophylactic use of statins. Basic Clin Pharmacol Toxicol 106(5):357–361PubMedGoogle Scholar
  27. Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118PubMedCrossRefGoogle Scholar
  28. Libby P (1995) Molecular bases of the acute coronary syndromes. Circulation 91(11):2844–2850PubMedGoogle Scholar
  29. Liu HT, Li WM, Xu G, Li XY, Bai XF, Wei P, Yu C, Du YG (2009) Chitosan oligosaccharides attenuate hydrogen peroxide-induced stress injury in human umbilical vein endothelial cells. Pharmacol Res 59(3):167–175PubMedCrossRefGoogle Scholar
  30. Loftus IM, Naylor AR, Bell PR, Thompson MM (2001) Plasma mmp-9—a marker of carotid plaque instability. Eur J Vasc Endovasc Surg 21(1):17–21PubMedCrossRefGoogle Scholar
  31. Luan Z, Chase AJ, Newby AC (2003) Statins inhibit secretion of metalloproteinases-1, -2, -3, and −9 from vascular smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol 23(5):769–775PubMedCrossRefGoogle Scholar
  32. Massaro M, Zampolli A, Scoditti E, Carluccio MA, Storelli C, Distante A, De Caterina R (2010) Statins inhibit cyclooxygenase-2 and matrix metalloproteinase-9 in human endothelial cells: anti-angiogenic actions possibly contributing to plaque stability. Cardiovasc Res 86(2):311–320PubMedCrossRefGoogle Scholar
  33. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494PubMedCrossRefGoogle Scholar
  34. Nagassaki S, Sertorio JT, Metzger IF, Bem AF, Rocha JB, Tanus-Santos JE (2006) Enos gene t-786c polymorphism modulates atorvastatin-induced increase in blood nitrite. Free Radic Biol Med 41(7):1044–1049PubMedCrossRefGoogle Scholar
  35. Newby AC (2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 85(1):1–31PubMedCrossRefGoogle Scholar
  36. Pacher P, Schulz R, Liaudet L, Szabo C (2005) Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci 26(6):302–310PubMedCrossRefGoogle Scholar
  37. Park JM, Kim A, Oh JH, Chung AS (2007) Methylseleninic acid inhibits pma-stimulated pro-mmp-2 activation mediated by mt1-mmp expression and further tumor invasion through suppression of nf-kappab activation. Carcinogenesis 28(4):837–847PubMedCrossRefGoogle Scholar
  38. Schweitzer M, Mitmaker B, Obrand D, Sheiner N, Abraham C, Dostanic S, Meilleur M, Sugahara T, Chalifour LE (2010) Atorvastatin modulates matrix metalloproteinase expression, activity, and signaling in abdominal aortic aneurysms. Vasc Endovascular Surg 44(2):116–122PubMedCrossRefGoogle Scholar
  39. Souza-Costa DC, Figueiredo-Lopes L, Alves-Filho JC, Semprini MC, Gerlach RF, Cunha FQ, Tanus-Santos JE (2007a) Protective effects of atorvastatin in rat models of acute pulmonary embolism: involvement of matrix metalloproteinase-9. Crit Care Med 35(1):239–245PubMedCrossRefGoogle Scholar
  40. Souza-Costa DC, Sandrim VC, Lopes LF, Gerlach RF, Rego EM, Tanus-Santos JE (2007b) Anti-inflammatory effects of atorvastatin: modulation by the t-786c polymorphism in the endothelial nitric oxide synthase gene. Atherosclerosis 193(2):438–444PubMedCrossRefGoogle Scholar
  41. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516PubMedCrossRefGoogle Scholar
  42. Viappiani S, Sariahmetoglu M, Schulz R (2006) The role of matrix metalloproteinase inhibitors in ischemia-reperfusion injury in the liver. Curr Pharm Des 12(23):2923–2934PubMedCrossRefGoogle Scholar
  43. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839PubMedCrossRefGoogle Scholar
  44. Yan C, Boyd DD (2007) Regulation of matrix metalloproteinase gene expression. J Cell Physiol 211(1):19–26PubMedCrossRefGoogle Scholar
  45. Zalba G, Fortuno A, Orbe J, San Jose G, Moreno MU, Belzunce M, Rodriguez JA, Beloqui O, Paramo JA, Diez J (2007) Phagocytic nadph oxidase-dependent superoxide production stimulates matrix metalloproteinase-9: implications for human atherosclerosis. Arterioscler Thromb Vasc Biol 27(3):587–593PubMedCrossRefGoogle Scholar
  46. Zaltsman AB, George SJ, Newby AC (1999) Increased secretion of tissue inhibitors of metalloproteinases 1 and 2 from the aortas of cholesterol fed rabbits partially counterbalances increased metalloproteinase activity. Arterioscler Thromb Vasc Biol 19(7):1700–1707PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Tatiane C. Izidoro-Toledo
    • 1
  • Danielle A. Guimaraes
    • 1
  • Vanessa A. Belo
    • 2
  • Raquel F. Gerlach
    • 3
  • Jose Eduardo Tanus-Santos
    • 1
  1. 1.Department of Pharmacology, Faculty of Medicine of Ribeirao PretoUniversity of Sao PauloRibeirão PretoBrazil
  2. 2.Department of Pharmacology, Faculty of Medical SciencesState University of CampinasCampinasBrazil
  3. 3.Department of Morphology, Stomatology and Physiology, Dental School of Ribeirao PretoUniversity of Sao PauloRibeirao PretoBrazil

Personalised recommendations