Different inhibitory effects of kynurenic acid and a novel kynurenic acid analogue on tumour necrosis factor-α (TNF-α) production by mononuclear cells, HMGB1 production by monocytes and HNP1-3 secretion by neutrophils

  • Zoltán Tiszlavicz
  • Balázs Németh
  • Ferenc Fülöp
  • László Vécsei
  • Katalin Tápai
  • Imre Ocsovszky
  • Yvette Mándi


Kynurenic acid (KynA), a broad spectrum antagonist of excitatory amino acid receptors, may serve as a protective agent in neurological disorders. The potential anti-inflammatory effect of KynA in human leukocytes has not been characterized. The aim of this study was to compare the effects of KynA with those of a new analogue, 2-(2-N,N-dimethylaminoethylamine-1-carbonyl)-1H-quinolin-4-one hydrochloride on tumour necrosis factor-α (TNF-α) production and high mobility group box protein 1 (HMGB1) secretion. The effects of KynA on granulocyte activation were investigated via the secretion of human neutrophil peptide 1–3 (HNP1–3). Peripheral blood mononuclear cells and granulocytes or CD14 positive monocytes were applied as effector cells, or whole blood cultures were used. TNF-α, HMGB1 and HNP1–3 concentrations were determined by ELISA, TNF-α and HNP1–3 mRNA expressions were quantified by reverse transcription PCR. KynA attenuated the TNF-α production of human mononuclear cells activated by heat-inactivated Staphylococcus aureus, inhibiting TNF-α production at the transcription level. Furthermore, KynA diminished HMGB1 secretion by U 937 monocytic cells and by peripheral blood monocytes. KynA inhibited the HNP1–3 secretion in whole blood and in granulocyte cultures. The suppressive effect of the KynA analogue was more potent than that of an equimolar concentration KynA in TNF-α, HMGB1 and HNP1–3 inhibition. These results suggest that the new KynA analogue has a more potent immunoregulatory effect than KynA on human mononuclear cells, monocytes and granulocytes and indicate the potential benefits of further exploration of its uses in human inflammatory disease.


Kynurenic acid TNF-α HMGB1 Defensin-α Monocytes Granulocytes 



We thank Mrs. Györgyi Müller for expert technical assistance and Mrs. Zsuzsanna Rosztoczy for skillful administration. This work was supported by Hungarian Research Grant OTKA K67889/5K540.


  1. Andersson U, Wang HC, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, Janson A, Kokkola R, Zhang MH, Yang H, Tracey KJ (2002) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192:565–570CrossRefGoogle Scholar
  2. Bonaldi T, Talamo P, Scaffidi P, Ferrera D, Porto A, Bachi A, Rubartelli A, Agresti A, Bianchi ME (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 22:5551–5560PubMedCrossRefGoogle Scholar
  3. Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214:149–160PubMedCrossRefGoogle Scholar
  4. Ganz T (1987) Extracellular release of antimicrobial defensins by human polymorphonuclear leukocytes. Infect Immun 55:568–571PubMedGoogle Scholar
  5. Gigler G, Szenasi G, Simo A, Levay G, Harsing LG, Sas K, Vecsei L, Toldi J (2007) Neuroprotective effect of L-kynurenine sulfate administered before focal cerebral ischemia in mice and global cerebral ischemia in gerbils. Eur J Pharmacol 564:116–122PubMedCrossRefGoogle Scholar
  6. Fiers W (1991) Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level. FEBS Lett 285:199–212PubMedCrossRefGoogle Scholar
  7. Harris HE, Andersson U (2004) The nuclear protein HMGB1 as a proinflammatory mediator. Eur J Immunol 34:1503–1512CrossRefGoogle Scholar
  8. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuuqerque EX (2001) The brain metabolite kynurenic acid inhibits α7 nicotinic receptor activity and increases non-α7 nicotic expression: physiopathological implications. J Neurosci 21:7463–7473PubMedGoogle Scholar
  9. Kaszaki J, Palasthy Z, Erczes D, Racz A, Torday C, Varga G, Vecsei L, Boros M (2008) Kynurenic acid inhibits intestinal hypermotility and xanthine oxidase activity during experimental colon obstruction in dogs. Neurogastroenterol Motil 20:53–62PubMedGoogle Scholar
  10. Kiss C, Vecsei L (2005) Neuroprotection and kynurenine system. In: Vecsei L (ed) Kynurenines in the brain: from experiment to clinics. Nova Science, New York, pp 173–191Google Scholar
  11. Klivenyi P, Toldi J, Vecsei L (2004) Kynurenines in neurodegenerative disorders: therapeutic consideration. In: Vecsei L (ed) Frontiers in clinical neuroscience: neurodegeneration and neuroprotection. Adv Exp Med Biol, vol 541. Kluwer, New York, pp 169–183Google Scholar
  12. Kocsis AK, Ocsovszky I, Tiszlavicz L, Tiszlavicz Z, Mandi Y (2009a) Helicobacter pylori induces the release of alpha-defensin by human granulocytes. Inflamm Res 58:241–247PubMedCrossRefGoogle Scholar
  13. Kocsis AK, SzabolcsA HP, Hofner P, Takács T, Farkas G, BodaK G, Mandi Y (2009b) Plasma concentrations of high-mobility group box protein1, soluble receptor for advanced glycation end products and circulating DNA in patients with acute pancreatitis. Pancreatology 9:383–391PubMedCrossRefGoogle Scholar
  14. Lagerström MC, Schiöth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357PubMedCrossRefGoogle Scholar
  15. Levy RM, Mollen KP, Prince JM, Kaczorowski DJ, Vallabhaneni R, Liu S, Tracey KJ, Lotze MT, Hackam DJ, Fink MP, Vodovotz Y, Billiar TR (2007) Systemic inflammation and remote organ injury following trauma require HMGB1. Am J Physiol Regul Integr Comp Physiol 293:R1538–R1544PubMedCrossRefGoogle Scholar
  16. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342PubMedCrossRefGoogle Scholar
  17. Lögters TT, Laryea MD, Altrichter J, Sokolowski J, Cinatl J, Reipen J, Linhart W, Windolf J, Scholz M, Wild M (2009) Increased plasma kynurenine values and kynurenine-tryptophan ratios after major trauma are early indicators for the developments of sepsis. Shock 32:29–34PubMedCrossRefGoogle Scholar
  18. Marosi M, Nagy D, Farkas T, Zs K, Rózsa É, Robotka H, Fülöp F, Vécsei L, Toldi J (2010) A novel kynurenic acid analogues: a comparison with kynurenic acid. An in vitro electrophysiological study. J Neural Transm 117:183–188PubMedCrossRefGoogle Scholar
  19. Mazza J, Rossi A, Weinberg JM (2010) Innovatives uses of tumor necrosis factor alpha inhibitors. Dermatol Clin 28:559–575PubMedCrossRefGoogle Scholar
  20. McNearney TA, Ma Y, Chen Y, Taglialatela G, Yin H, Zhang WR, Westlund KN (2010) A peripheral neuroimmune link: glutamate agonists upregulate NMDA NR1 receptor mRNA and protein, vimentin, TNF-alpha, and RANTES in cultured human synoviocytes. Am J Physiol Regul Integr Comp Physiol 298:R584–R598PubMedCrossRefGoogle Scholar
  21. Nemeth H, Toldi J, Vecsei L (2005) Role of kynurenines in the central and peripheral nervous systems. Curr Neurovasc Res 2:249–260PubMedCrossRefGoogle Scholar
  22. Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, Ochani M, Ochani K, Yang LH, Hudson L, Lin X, Patel N, Johnson SM, Chavan S, Goldstein RS, Czura CJ, Miller EJ, Al-Abed Y, Traccy KJ, Pavlov VA (2008) Modulation of TNF release by choline requires alpha7 subunit nicotinic acethylcholine receptor-mediated signaling. Mol Med 14:567–574PubMedCrossRefGoogle Scholar
  23. Pisetsky DS, Erlandsson-Harris H, Andersson U (2008) High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res Ther 10:209–223PubMedCrossRefGoogle Scholar
  24. Quinn K, Henriques M, Parker T, Slutsky AS, Zhang H (2008) Human neutrophil peptides: a novel potential mediator of inflammatory. Am J Physiol Heart Circ Physiol 295:1817–1824CrossRefGoogle Scholar
  25. Robotka H, Toldi J, Vécsei L (2008) L-Kynurenine: metabolism and mechanism of neuroprotection. Future Neurol 3:169–188CrossRefGoogle Scholar
  26. Rosas-Ballina M, Tracey KJ (2009) Cholinergic control of inflammation. J Intern Med 265:663–679PubMedCrossRefGoogle Scholar
  27. Rózsa É, Robotka H, Vécsei L, Toldi J (2008) The Janus-face kynurenic acid. J Neural Transm 115:1087–1091PubMedCrossRefGoogle Scholar
  28. Sas K, Robotka H, Toldi J, Vecsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239PubMedCrossRefGoogle Scholar
  29. Schwarcz R, Ceresoli-Borroni G, Wu HQ, Rassoulpour A, Poeggeler B, Hodgkins PS, Guidetti P (1999) Modulation and function of kynurenic acid in the immature rat brain. Adv Exp Med Biol 467:113–123PubMedGoogle Scholar
  30. Sthoeger ZM, Bezalel S, Chapnik N, Asher I, Froy O (2008) High α-defensin levels in patients with systemic lupus erythematosus. Immunology 127:116–122CrossRefGoogle Scholar
  31. Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379PubMedGoogle Scholar
  32. Stone TW (2000) Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends Pharmacol Sci 21:149–154PubMedCrossRefGoogle Scholar
  33. Sundén-Cullberg J, Norrby-Teglund A, Treutiger CJ (2006) The role of high mobility group box-1 protein in severe sepsis. Curr Opin Infect Dis 19:231–236PubMedCrossRefGoogle Scholar
  34. Swartz KJ, During MJ, Freese A, Beal MF (1990) Cerebral synthesis and release of kynurenic acid: an endogenous antagonist of excitatory amino acid receptors. J Neurosci 10:2965–2973PubMedGoogle Scholar
  35. Ulloa L, Messmer D (2006) High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev 17:189–201PubMedCrossRefGoogle Scholar
  36. Vamos E, Pardutz A, Klivenyi P, Toldi J, Vecsei L (2009) The role of kynurenines in disorders of the central nervous system: possibilities for neuroprotection. J Neurol Sci 283:21–27PubMedCrossRefGoogle Scholar
  37. Varga G, Erces D, Fazekas B, Fulop M, Kovacs T, Kaszaki J, Fulop F, Vecsei L, Boros M (2010) N-Methyl-d-aspartate receptor antagonism decreases motility and inflammatory activation in the early phase of acute experimental colitis in the rat. Neurogastroenterol Motil 22:217–221PubMedCrossRefGoogle Scholar
  38. Vecsei L, Miller J, MacGarvey U, Beal MF (1992) Kynurenine and probenecid inhibit pentylenetetrazol-induced and NMDLA-induced seizures and increase kynurenic acid concentrations in the brain. Brain Res Bull 28:233–238PubMedCrossRefGoogle Scholar
  39. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang HC, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha 7 subunit is an essential regulator of inflammation. Nature 421:384–388PubMedCrossRefGoogle Scholar
  40. Wang H, Liao H, Ochani M, Justiniani M, Lin XC, Yang LH, Al-Abed Y, Wang HC, Metz C, Miller EJ, Tracey KJ, Ulloa L (2004) Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 10:1216–1221PubMedCrossRefGoogle Scholar
  41. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028PubMedCrossRefGoogle Scholar
  42. Wang JE, Jorgensen PF, Almlof M, Thiemermann C, Foster SJ, Aasen AO, Solberg R (2000) Peptidoglycan and lipoteichoic acid from Staphylococcus aureus induce tumor necrosis factor alpha, interleukin 6 (IL-6) and IL-10 production in both T cells and monocytes in a human whole blood model. Infect Immun 68:3965–3970PubMedCrossRefGoogle Scholar
  43. Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23:291–296PubMedCrossRefGoogle Scholar
  44. Yoshikawa H, Kurokawa M, Ozaki N, Nara K, Atou K, Takada E, Kamochi H, Suzuki N (2006) Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-kappa B phosphorylation and nuclear factor-kappa B transcriptional activity through nicotinic acetylcholine receptor alpha7. Clin Exp Immunol 146:116–123PubMedCrossRefGoogle Scholar
  45. Zádori D, Klivényi P, Vámos E, Fülöp F, Toldi J, Vécsei L (2006) Kynurenines in chronic neurodegenerative disorders: future therapeutic strategies. J Neural Transm 116:1403–1409CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Zoltán Tiszlavicz
    • 1
  • Balázs Németh
    • 1
  • Ferenc Fülöp
    • 2
  • László Vécsei
    • 3
  • Katalin Tápai
    • 4
  • Imre Ocsovszky
    • 5
  • Yvette Mándi
    • 1
  1. 1.Department of Medical Microbiology and ImmunobiologyUniversity of SzegedSzegedHungary
  2. 2.Department of Pharmaceutical ChemistryUniversity of SzegedSzegedHungary
  3. 3.Department of NeurologyUniversity of SzegedSzegedHungary
  4. 4.Regional Centre of the Hungarian National Blood Transfusion ServiceSzegedHungary
  5. 5.Department of BiochemistryUniversity of SzegedSzegedHungary

Personalised recommendations