Advertisement

Lack of positive allosteric modulation of mutated α1S267I glycine receptors by cannabinoids

  • Nilufar Foadi
  • Martin Leuwer
  • Reyhan Demir
  • Reinhard Dengler
  • Vanessa Buchholz
  • Jeanne de la Roche
  • Matthias Karst
  • Gertrud Haeseler
  • Jörg AhrensEmail author
SHORT COMMUNICATION

Abstract

Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of chronic pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine. Ajulemic acid and HU210 are non-psychotropic, synthetic cannabinoids. Cannabidiol is a non-psychotropic plant constituent of cannabis sativa. There are hints that non-cannabinoid receptor mechanisms of these cannabinoids might be mediated via glycine receptors. In this study, we investigated the impact of the amino acid residue serine at position 267 on the glycine-modulatory effects of ajulemic acid, cannabidiol and HU210. Mutated α1S267I glycine receptors transiently expressed in HEK293 cells were studied by utilising the whole-cell clamp technique. The mutation of the α1 subunit TM2 serine residue to isoleucine abolished the co-activation and the direct activation of the glycine receptor by the investigated cannabinoids. The nature of the TM2 (267) residue of the glycine α1 subunit is crucial for the glycine-modulatory effect of ajulemic acid, cannabidiol and HU210. An investigation of the impact of such mutations on the in vivo interaction of cannabinoids with glycine receptors should permit a better understanding of the molecular determinants of action of cannabinoids.

Keywords

Glycine receptor Mutation S267I Cannabinoids 

Notes

Acknowledgement

We are grateful to Prof. Jeremy J. Lambert, Neuroscience Institute, University of Dundee, UK, for providing us with mutated α1 cDNA; J. Kilian and A. Niesel, Department of Neurology, Hannover, for technical support and Prof. Sumner Burstein, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, USA, for his kind supply of AJA.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, Brenner GJ, Rubino T, Michalski CW, Marsicano G, Monory K, Mackie K, Marian C, Batkai S, Parolaro D, Fischer MJ, Reeh P, Kunos G, Kress M, Lutz B, Woolf CJ, Kuner R (2007) Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 10(7):870–879CrossRefPubMedGoogle Scholar
  2. Ahrens J, Haeseler G, Leuwer M, Mohammadi B, Krampfl K, Dengler R, Bufler J (2004) 2, 6 Di-tert-butylphenol, a nonanesthetic propofol analog, modulates alpha1beta glycine receptor function in a manner distinct from propofol. Anesth Analg 99(1):91–96CrossRefPubMedGoogle Scholar
  3. Ahrens J, Leuwer M, Stachura S, Krampfl K, Belelli D, Lambert JJ, Haeseler G (2008) A transmembrane residue influences the interaction of propofol with the strychnine-sensitive glycine alpha1 and alpha1beta receptor. Anesth Analg 107(6):1875–1883CrossRefPubMedGoogle Scholar
  4. Ahrens J, Demir R, Leuwer M, de la Roche J, Krampfl K, Foadi N, Karst M, Haeseler G (2009a) The nonpsychotropic cannabinoid cannabidiol modulates and directly activates alpha-1 and alpha-1-beta glycine receptor function. Pharmacology 83(4):217–222CrossRefPubMedGoogle Scholar
  5. Ahrens J, Leuwer M, Demir R, Krampfl K, de la Roche J, Foadi N, Karst M, Haeseler G (2009b) Positive allosteric modulatory effects of ajulemic acid at strychnine-sensitive glycine alpha1- and alpha1beta-receptors. Naunyn Schmiedebergs Arch Pharmacol 379(4):371–378CrossRefPubMedGoogle Scholar
  6. Ashton JC (2007) Cannabinoids for the treatment of inflammation. Curr Opin Investig Drugs 8(5):373–384PubMedGoogle Scholar
  7. Belelli D, Lambert JJ, Peters JA, Wafford K, Whiting PJ (1997) The interaction of the general anesthetic etomidate with the gamma-aminobutyric acid type A receptor is influenced by a single amino acid. Proc Natl Acad Sci USA 94(20):11031–11036CrossRefPubMedGoogle Scholar
  8. Betz H, Laube B (2006) Glycine receptors: recent insights into their structural organization and functional diversity. J Neurochem 97(6):1600–1610CrossRefPubMedGoogle Scholar
  9. Bolay H, Moskowitz MA (2002) Mechanisms of pain modulation in chronic syndromes. Neurology 59(5 Suppl 2):S2–S7PubMedGoogle Scholar
  10. Burstein S (2005) Ajulemic acid (IP-751): synthesis, proof of principle, toxicity studies, and clinical trials. Aaps J 7(1):E143–E148CrossRefPubMedGoogle Scholar
  11. Burstein SH, Karst M, Schneider U, Zurier RB (2004) Ajulemic acid: a novel cannabinoid produces analgesia without a “high”. Life Sci 75(12):1513–1522CrossRefPubMedGoogle Scholar
  12. Costa B (2007) On the pharmacological properties of Delta9-tetrahydrocannabinol (THC). Chem Biodivers 4(8):1664–1677CrossRefPubMedGoogle Scholar
  13. Dyson A, Peacock M, Chen A, Courade JP, Yaqoob M, Groarke A, Brain C, Loong Y, Fox A (2005) Antihyperalgesic properties of the cannabinoid CT-3 in chronic neuropathic and inflammatory pain states in the rat. Pain 116(1–2):129–137CrossRefPubMedGoogle Scholar
  14. Franke C, Hatt H, Dudel J (1987) Liquid filament switch for ultra-fast exchanges of solutions at excised patches of synaptic membrane of crayfish muscle. Neurosci Lett 77(2):199–204CrossRefPubMedGoogle Scholar
  15. Geiman EJ, Zheng W, Fritschy JM, Alvarez FJ (2002) Glycine and GABA(A) receptor subunits on Renshaw cells: relationship with presynaptic neurotransmitters and postsynaptic gephyrin clusters. J Comp Neurol 444(3):275–289CrossRefPubMedGoogle Scholar
  16. Grudzinska J, Schemm R, Haeger S, Nicke A, Schmalzing G, Betz H, Laube B (2005) The beta subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45(5):727–739CrossRefPubMedGoogle Scholar
  17. Guindon J, Hohmann AG (2008) Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. Br J Pharmacol 153(2):319–334CrossRefPubMedGoogle Scholar
  18. Haeseler G, Ahrens J, Krampfl K, Bufler J, Dengler R, Hecker H, Aronson JK, Leuwer M (2005) Structural features of phenol derivatives determining potency for activation of chloride currents via alpha(1) homomeric and alpha(1)beta heteromeric glycine receptors. Br J Pharmacol 145(7):916–925CrossRefPubMedGoogle Scholar
  19. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100CrossRefPubMedGoogle Scholar
  20. Hejazi N, Zhou C, Oz M, Sun H, Ye JH, Zhang L (2006) Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol Pharmacol 69(3):991–997PubMedGoogle Scholar
  21. Iatsenko NM, Tsintsadze T, Lozova NO (2007) The synthetic cannabinoid analog WIN 55, 212–2 potentiates the amplitudes of glycine-activated currents. Fiziol Zh 53(3):31–37PubMedGoogle Scholar
  22. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82(2):503–568PubMedGoogle Scholar
  23. Knabl J, Witschi R, Hosl K, Reinold H, Zeilhofer UB, Ahmadi S, Brockhaus J, Sergejeva M, Hess A, Brune K, Fritschy JM, Rudolph U, Mohler H, Zeilhofer HU (2008) Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451(7176):330–334CrossRefPubMedGoogle Scholar
  24. Krasowski MD, Finn SE, Ye Q, Harrison NL (1998) Trichloroethanol modulation of recombinant GABAA, glycine and GABA rho 1 receptors. J Pharmacol Exp Ther 284(3):934–942PubMedGoogle Scholar
  25. Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82(2):488–492CrossRefPubMedGoogle Scholar
  26. Laube B, Maksay G, Schemm R, Betz H (2002) Modulation of glycine receptor function: a novel approach for therapeutic intervention at inhibitory synapses? Trends Pharmacol Sci 23(11):519–527CrossRefPubMedGoogle Scholar
  27. Lynch JW, Callister RJ (2006) Glycine receptors: a new therapeutic target in pain pathways. Curr Opin Investig Drugs 7(1):48–53PubMedGoogle Scholar
  28. McCarberg BH, Barkin RL (2007) The future of cannabinoids as analgesic agents: a pharmacologic, pharmacokinetic, and pharmacodynamic overview. Am J Ther 14(5):475–483CrossRefPubMedGoogle Scholar
  29. Mechoulam R, Peters M, Murillo-Rodriguez E, Hanus LO (2007) Cannabidiol—recent advances. Chem Biodivers 4(8):1678–1692CrossRefPubMedGoogle Scholar
  30. Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, Mascia MP, Valenzuela CF, Hanson KK, Greenblatt EP, Harris RA, Harrison NL (1997) Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389(6649):385–389CrossRefPubMedGoogle Scholar
  31. Tao Q, McAllister SD, Andreassi J, Nowell KW, Cabral GA, Hurst DP, Bachtel K, Ekman MC, Reggio PH, Abood ME (1999) Role of a conserved lysine residue in the peripheral cannabinoid receptor (CB2): evidence for subtype specificity. Mol Pharmacol 55(3):605–613PubMedGoogle Scholar
  32. Todd AJ, Watt C, Spike RC, Sieghart W (1996) Colocalization of GABA, glycine, and their receptors at synapses in the rat spinal cord. J Neurosci 16(3):974–982PubMedGoogle Scholar
  33. Weir CJ, Ling AT, Belelli D, Wildsmith JA, Peters JA, Lambert JJ (2004) The interaction of anaesthetic steroids with recombinant glycine and GABAA receptors. Br J Anaesth 92(5):704–711CrossRefPubMedGoogle Scholar
  34. Zeilhofer HU (2005) The glycinergic control of spinal pain processing. Cell Mol Life Sci 62(18):2027–2035CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Nilufar Foadi
    • 1
  • Martin Leuwer
    • 3
  • Reyhan Demir
    • 1
  • Reinhard Dengler
    • 2
  • Vanessa Buchholz
    • 1
  • Jeanne de la Roche
    • 1
  • Matthias Karst
    • 1
  • Gertrud Haeseler
    • 4
  • Jörg Ahrens
    • 1
    Email author
  1. 1.Clinic for Anaesthesia and Critical Care Medicine; OE 8050Hannover Medical SchoolHannoverGermany
  2. 2.Department of Neurology and NeurophysiologyHannover Medical SchoolHannoverGermany
  3. 3.Division of Clinical SciencesThe University of LiverpoolLiverpoolUK
  4. 4.Clinic for AnaesthesiaSt. Elisabeth Krankenhaus DorstenDorstenGermany

Personalised recommendations