Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 380, Issue 2, pp 143–151 | Cite as

Blockade of HERG K+ channel by isoquinoline alkaloid neferine in the stable transfected HEK293 cells

  • Dong-fang Gu
  • Xue-lian Li
  • Zhi-ping Qi
  • Sha-shan Shi
  • Mei-qin Hu
  • Dong-min Liu
  • Cheng-bai She
  • Yan-jie Lv
  • Bao-xin LiEmail author
  • Bao-feng YangEmail author
ORIGINAL ARTICLE

Abstract

We studied the effects of isoquinoline alkaloid neferine (Nef) extracted from the seed embryo of Nelumbo nucifera Gaertn on Human ether-à-go-go-related gene (HERG) channels stably expressed in human embryonic kidney (HEK293) cells using whole-cell patch clamp technique, western blot analysis and immunofluorescence experiment. Nef induced a concentration-dependent decrease in current amplitude according to the voltage steps and tail currents of HERG with an IC50 of 7.419 μM (n H −0.5563). Nef shifted the activation curve in a significantly negative direction and accelerated recovery from inactivation and onset of inactivation, however, slowed deactivation. In addition, it had no significant influence on steady-state inactivation curve. Western blot and immunofluorescence results suggested Nef had no significant effect on the expression of HERG protein. In summary, Nef can block HERG K+ channels that functions by changing the channel activation and inactivation kinetics. Nef has no effect on the generation and trafficking of HERG protein. A blocked-off HERG channel was one mechanism of the anti-arrhythmic effects by Nef.

Keywords

Neferine HEK293 cells HERG channel Patch clamp Immunofluorescence Western blot 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (no. 30572181), the National Natural Science Foundation of China (no. 30672644), the National Grand Fundamental Research 973 Program of China (no. 2007CB512000, 2007CB512006), and the Specialized Research Fund for the Doctoral Program of Higher Education (no. 20060226019).

References

  1. Cai BZ, Gong DM, Pan ZW, Liu Y, Qian H, Zhang Y, Jiao JD, Lu YJ, Yang BF (2007) Large-conductance Ca2+-activated K+ currents blocked and impaired by homocysteine in human and rat mesenteric artery smooth muscle cells. Life Sci 80:2060–2066PubMedCrossRefGoogle Scholar
  2. Chapman H, Pasternack M (2007) The action of the novel gastrointestinal prokinetic prucalopride on the HERG K+ channel and the common T897 polymorph. Eur J Pharmacol 554:98–105PubMedCrossRefGoogle Scholar
  3. Danielsson BR, Lansdell K, Patmore L, Tomson T (2003) Phenytoin and phenobarbital inhibit human HERG potassium channels. Epilepsy Res 55:147–157PubMedCrossRefGoogle Scholar
  4. David F, Steele JE, David F (2007) Mechanisms of cardiac potassium channel trafficking. J Physiol 582:17–26CrossRefGoogle Scholar
  5. Ducroq J, Printemps R, Guilbot S, Gardette J, Salvetat C, Le GM (2007) Action potential experiments complete hERG assay and QT-interval measurements in cardiac preclinical studies. J Pharmacol Toxicol Methods 56:159–170PubMedCrossRefGoogle Scholar
  6. Eckhardt LL, Rajamani S, January CT (2005) Protein trafficking abnormalities: a new mechanism in drug-induced long QT syndrome. Br J Pharmacol 145:3–4PubMedCrossRefGoogle Scholar
  7. Ficker E, Kuryshev YA, Dennis AT, Obejero-Paz C, Wang L, Hawryluk P, Wible BA, Brown AM (2004) Mechanisms of arsenic-induced prolongation of cardiac repolarization. Mol Pharmacol 66:33–44PubMedCrossRefGoogle Scholar
  8. Gong Q, Anderson CL, January CT, Zhou Z (2002) Role of glycolsylation in cell surface expression and stability of HERG potassium channels. Am J Physiol 283:H77–H84Google Scholar
  9. Guo ZB, Li Q, Cao HY, Xu Z (2002) Antiarrhythmic efficacy of neferine assessed by programmed electrical stimulation in a canine model of electropharmacology. J Chin Pharm Sci 11:35–42Google Scholar
  10. Hancox JC, McPate MJ, EI Harchi A, Zhang YH (2008) The hERG potassium channel and hERG screening for drug-induced torsades de pointes. Pharmacol Ther 119:118–132PubMedCrossRefGoogle Scholar
  11. Li GR, Li XG, Qian JQ, Lue FH (1987) Effects of neferine on electrical and mechanical activity in isolated guinea pig myocardium. Chinese Journal of Pharmacology and Toxicology 1:268–271Google Scholar
  12. Li GR, Lu FH, Qian JQ (1988) Effects of neferine on physiologic properties and the dose-effect response of isoprenaline and Ca2+ in guinea pig atria. Acta Pharm Sin 23:241–245Google Scholar
  13. Li BX, Yang BF, Zhou J, Xu CQ, Li YR (2001) Inhibitory effects of berberine on I k1, I k and HERG channels of cardiac myocytes. Acta Pharmacologica Sin 22:125–131Google Scholar
  14. Qian JQ (2002) Cardiovascular pharmacological effects of bisbenzylisoquinoline alkaloid derivatives. Acta Pharmacol Sin 23:1086–1092PubMedGoogle Scholar
  15. Rajamani S, Eckhardt LL, Valdivia CR, Klemens CA, Gillman BM, Anderson CL, Holzem KM, Delisle BP, Anson BD, Makielski JC, January CT (2006) Drug-induced long QT syndrome: HERG K+ channel block and disruption of protein trafficking by fluoxetine and norfluoxetine. Br J Pharmacol 149:481–489PubMedCrossRefGoogle Scholar
  16. Ravens U, Cerbai E (2008) Role of potassium in cardiac arrhythmias. Europace 10:1133–1137PubMedCrossRefGoogle Scholar
  17. Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PKS, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG (2003) Cardiovasc Res 58:32–45PubMedCrossRefGoogle Scholar
  18. Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469PubMedCrossRefGoogle Scholar
  19. Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the I kr potassium channel. Cell 81:299–307PubMedCrossRefGoogle Scholar
  20. Shin WH, Kim KS, Kim EJ (2006) Electrophysiological effects of brompheniramine on cardiac ion channels and action potential. Pharmacol Res 54:414–420PubMedCrossRefGoogle Scholar
  21. Tang XQ, Cao JG (2004) Review on the pharmacological research of neferine. Chin Pharmacol Bull 20:8–10Google Scholar
  22. Traebert M, Dumotier B, Meister L, Hoffmann P, Dominguez-Estevez M, Suter W (2004) Inhibition of HERG K+ currents by antimalarial drugs in stably transfected HEK293 cells. Eur J Pharmacol 484:41–48PubMedCrossRefGoogle Scholar
  23. Tsujimae K, Suzuki S, Yamada M, Kurachi Y (2004) Comparison of kinetic properties of quinidine and dofetilide block of HERG channels. Eur J Pharmacol 493:29–40PubMedCrossRefGoogle Scholar
  24. Wang JL, Zong XG, Yao WX, Jiang MX (1999) Effects of neferine on I Na, I Ca-L and steady-state outward K+ current of ventricular myocytes. Chin Pharmacol Bull 15:357–360Google Scholar
  25. Webster G, Berul CI (2008) Congenital long-QT syndromes: a clinical and genetic update from infancy through adulthood. Trends Cardiovasc Med 18:216–224PubMedCrossRefGoogle Scholar
  26. Xia GJ, Liu YF, Lu FH (1986) Effects of methyl-liensinine on experimental arrhythmias. Acta Univ Med Tongji 3:200–202Google Scholar
  27. Yabuuchi F, Beckmann R, Wettwer E, Hegele-hartung C, Heubach JF (2007) Reduction of HERG potassium currents by hyperosmolar solutions. Eur J Pharmacol 566:222–225PubMedCrossRefGoogle Scholar
  28. Yang Y, Shui QL, Zeng XR, Liu ZF, Zhou W, Li ML (2000) Effects of neferine on potassium channels in guinea pig ventricular cells and porcine coronary artery smooth muscle cells. Chinese Journal of Pharmacology and Toxicology 14:405–410Google Scholar
  29. Yang BF, Lin HX, Xiao JN, Lu YJ, Luo XB, Li BX, Zhang Y, Xu CQ, Bai YL, Wang HZ, Chen GH, Wang ZG (2007) The muscle-specific microRNA miR-1 regulates cardiacarrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491PubMedCrossRefGoogle Scholar
  30. Yeung KS, Meanwell NA (2008) Inhibition of hERG trafficking: an under-explored mechanism for drug-induced QT prolongation. ChemMedChem 3:1501–1502PubMedCrossRefGoogle Scholar
  31. Zitron E, Kiesecker C, Scholz E, Luck S, Bloehs R, Kathofer S, Thomas D, Kiehn J, Kreye VA, Katus HA, Schoels W, Karle CA (2004) Inhibition of cardiac HERG potassium channels by the atypical antidepressant trazodone. Naumyn Schmiedebergs Arch Pharmacol 370:146–156Google Scholar
  32. Zünkler BJ (2006) Human ether-a-go-go-related (HERG) gene and ATP-sensitive potassium channels as targets for adverse drug effects. Pharmacol Ther 112:12–37PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Dong-fang Gu
    • 1
  • Xue-lian Li
    • 1
  • Zhi-ping Qi
    • 1
  • Sha-shan Shi
    • 1
  • Mei-qin Hu
    • 1
  • Dong-min Liu
    • 1
  • Cheng-bai She
    • 1
  • Yan-jie Lv
    • 1
  • Bao-xin Li
    • 1
    • 2
    Email author
  • Bao-feng Yang
    • 1
    • 2
    Email author
  1. 1.Department of PharmacologyHarbin Medical UniversityHarbinPeople’s Republic of China
  2. 2.Bio-Pharmaceutical Key Laboratory of Heilongjiang Province-Incubator of StateKey LaboratoryHarbinPeople’s Republic of China

Personalised recommendations