GABAA autoreceptors enhance GABA release from human neocortex: towards a mechanism for high-frequency stimulation (HFS) in brain?

  • Michela Mantovani
  • Andreas Moser
  • Carola A. Haas
  • Josef Zentner
  • Thomas J. FeuersteinEmail author
Original Article


High-frequency stimulation (HFS) in human neocortical slices induces γ-aminobutyric acid (GABA) release via GABAA receptor (GABAAR) activation. The mechanism of this effect and the localization of these GABAARs were now studied. Fresh human neocortical slices were subjected to HFS (130 Hz) in the presence of veratridine (3 µM). As measured by high-performance liquid chromatography, only GABA but not glutamate outflow was affected by HFS/veratridine stimulation. The evoked GABA overflow was abolished by tetrodotoxin and furosemide, suggesting an involvement of action potentials and plasmalemmal chloride gradients. Double immunolabeling showed that GABAARs are localized on soma and dendrites of GABAergic neurons in the human neocortex. Moreover, in support of a terminal localization of GABAARs, the K+-evoked [3H]-GABA release from synaptosomes was enhanced by the GABAAR agonist muscimol (antagonized by GABAAR blockers). We conclude that HFS in human brain neocortex leads to a specific increase of GABA release, which is mediated by facilitatory GABAA autoreceptors located on soma, dendrites, and axon terminals of GABAergic neurons.


High-frequency stimulation Potassium depolarization γ-aminobutyric acid (GABA) release GABAA autoreceptor localization Human neocortex slices Human neocortex synaptosomes 



artificial cerebrospinal fluid


aminooxyacetic acid


cation-chloride cotransporter


4′,6-diamidine-2-phenylindole dihydrochloride


DL-threo-β-benzyloxyaspartic acid


γ-aminobutyric acid


GABAA receptors


glutamic acid decarboxylase


GABA transporter




high-frequency stimulation


1-diphenylmethyleneaminooxyethyl-l,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride


(±) nipecotic acid


phosphate buffer









M. M. gratefully acknowledges the support by the German Academic Exchange Service (DAAD).


  1. Akbarian S, Huntsman MM, Kim JJ, Tafazzoli A, Potkin SG, Bunney WE Jr et al (1995) GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls. Cereb Cortex 5:550–560PubMedCrossRefGoogle Scholar
  2. Alle H, Geiger JR (2007) GABAergic spill-over transmission onto hippocampal mossy fiber boutons. J Neurosci 27:942–950PubMedCrossRefGoogle Scholar
  3. Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter. Neuron 11:401–407PubMedCrossRefGoogle Scholar
  4. Axmacher N, Draguhn A (2004) Inhibition of GABA release by presynaptic ionotropic GABA receptors in hippocampal CA3. NeuroReport 15:329–334PubMedCrossRefGoogle Scholar
  5. Bedwani JR, Songra AK, Trueman CJ (1984) Influence of aminooxyacetic acid on the potassium-evoked release of [3H]gamma-aminobutyric acid from slices of rat cerebral cortex. Neurochem Res 9:1101–1108PubMedCrossRefGoogle Scholar
  6. Belenky MA, Sagiv N, Fritschy JM, Yarom Y (2003) Presynaptic and postsynaptic GABAA receptors in rat suprachiasmatic nucleus. Neuroscience 118:909–923PubMedCrossRefGoogle Scholar
  7. Belhage B, Hansen GH, Schousboe A (1993) Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA. Neuroscience 54:1019–1034PubMedCrossRefGoogle Scholar
  8. Benabid AL (2003) Deep brain stimulation for Parkinson's disease. Curr Opin Neurobiol 13:696–706PubMedCrossRefGoogle Scholar
  9. Benabid AL, Koudsie A, Benazzouz A, Vercueil L, Fraix V, Chabardes S et al (2001) Deep brain stimulation of the corpus luysi (subthalamic nucleus) and other targets in Parkinson's disease. Extension to new indications such as dystonia and epilepsy. J Neurol 248(Suppl 3):III37–III47PubMedGoogle Scholar
  10. Benabid AL, Benazzous A, Pollak P (2002) Mechanisms of deep brain stimulation. Mov Disord 17(Suppl 3):S73–S74PubMedCrossRefGoogle Scholar
  11. Benabid AL, Wallace B, Mitrofanis J, Xia C, Piallat B, Fraix V et al (2005a) Therapeutic electrical stimulation of the central nervous system. C R Biol 328:177–186CrossRefGoogle Scholar
  12. Benabid AL, Wallace B, Mitrofanis J, Xia R, Piallat B, Chabardes S et al (2005b) A putative generalized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system. Acta Neurol Belg 105:149–157Google Scholar
  13. Benazzouz A, Hallett M (2000) Mechanism of action of deep brain stimulation. Neurology 55:S13–S16PubMedGoogle Scholar
  14. Ben-Menachem E, Hamberger A, Mumford J (1993) Effect of long-term vigabatrin therapy on GABA and other amino acid concentrations in the central nervous system—a case study. Epilepsy Res 16:241–243PubMedCrossRefGoogle Scholar
  15. Bernath S, Zigmond MJ (1988) Characterization of [3H]GABA release from striatal slices: evidence for a calcium-independent process via the GABA uptake system. Neuroscience 27:563–570PubMedCrossRefGoogle Scholar
  16. Bonanno G, Cavazzani P, Andrioli GC, Asaro D, Pellegrini G, Raiteri M (1989) Release-regulating autoreceptors of the GABAB-type in human cerebral cortex. Br J Pharmacol 96:341–346PubMedGoogle Scholar
  17. Borden LA, Murali Dhar TG, Smith KE, Weinshank RL, Branchek TA, Gluchowski C (1994) Tiagabine, SK&F 89976-A, CI-966, and NNC-711 are selective for the cloned GABA transporter GAT-1. Eur J Pharmacol 269:219–224PubMedCrossRefGoogle Scholar
  18. Bormann J, Hamill OP, Sakmann B (1987) Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J Physiol 385:243–286PubMedGoogle Scholar
  19. Cammack JN, Rakhilin SV, Schwartz EA (1994) A GABA transporter operates asymmetrically and with variable stoichiometry. Neuron 13:949–960PubMedCrossRefGoogle Scholar
  20. Carvalho CM, Santos SV, Carvalho AP (1986) γ-Aminobutyric acid release from synaptosomes as influenced by Ca2+ and Ca2+ channel blockers. Eur J Pharmacol 131:1–12PubMedCrossRefGoogle Scholar
  21. Dostrovsky JO, Lozano AM (2002) Mechanisms of deep brain stimulation. Mov Disord 17(Suppl 3):S63–S68PubMedCrossRefGoogle Scholar
  22. Fassio A, Bonanno G, Cavazzani P, Raiteri M (1994) Characterization of the GABA autoreceptor in human neocortex as a pharmacological subtype of the GABAB receptor. Eur J Pharmacol 263:311–314PubMedCrossRefGoogle Scholar
  23. Feuerstein TJ, Rossner R, Schumacher M (1997) How to express an effect mean as percentage of a control mean? J Pharmacol Toxicol Methods 37:187–190PubMedCrossRefGoogle Scholar
  24. Galanopoulou AS (2007) Developmental patterns in the regulation of chloride homeostasis and GABA(A) receptor signaling by seizures. Epilepsia 48(Suppl 5):14–18PubMedCrossRefGoogle Scholar
  25. Hadingham KL, Wafford KA, Thompson SA, Palmer KJ, Whiting PJ (1995) Expression and pharmacology of human GABAA receptors containing gamma 3 subunits. Eur J Pharmacol 291:301–309PubMedCrossRefGoogle Scholar
  26. Jang IS, Jeong HJ, Akaike N (2001) Contribution of the Na–K–Cl cotransporter on GABA(A) receptor-mediated presynaptic depolarization in excitatory nerve terminals. J Neurosci 21:5962–5972PubMedGoogle Scholar
  27. Jang IS, Nakamura M, Ito Y, Akaike N (2006) Presynaptic GABAA receptors facilitate spontaneous glutamate release from presynaptic terminals on mechanically dissociated rat CA3 pyramidal neurons. Neuroscience 138:25–35PubMedCrossRefGoogle Scholar
  28. Jarolimek W, Brunner H, Lewen A, Misgeld U (1996) Role of chloride-homeostasis in the inhibitory control of neuronal network oscillators. J Neurophysiol 75:2654–2657PubMedGoogle Scholar
  29. Jarolimek W, Lewen A, Misgeld U (1999) A furosemide-sensitive K+–Cl-cotransporter counteracts intracellular Cl- accumulation and depletion in cultured rat midbrain neurons. J Neurosci 19:4695–4704PubMedGoogle Scholar
  30. Kauppinen RA, Sihra TS, Nicholls DG (1987) Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochim Biophys Acta 930:173–178PubMedCrossRefGoogle Scholar
  31. Kullmann DM, Ruiz A, Rusakov DM, Scott R, Semyanov A, Walker MC (2005) Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? Prog Biophys Mol Biol 87:33–46PubMedCrossRefGoogle Scholar
  32. Lee KH, Kristic K, van Hoff R, Hitti FL, Blaha C, Harris B et al (2007) High-frequency stimulation of the subthalamic nucleus increases glutamate in the subthalamic nucleus of rats as demonstrated by in vivo enzyme-linked glutamate sensor. Brain Res 1162:121–129PubMedCrossRefGoogle Scholar
  33. Li T, Qadri F, Moser A (2004) Neuronal electrical high frequency stimulation modulates presynaptic GABAergic physiology. Neurosci Lett 371:117–121PubMedCrossRefGoogle Scholar
  34. Li T, Thumen A, Moser A (2006) Modulation of a neuronal network by electrical high frequency stimulation in striatal slices of the rat in vitro. Neurochem Int 48:83–86PubMedCrossRefGoogle Scholar
  35. Liberti M, Apollonio F, Paffi A, Parazzini M, Maggio F, Novellino T et al (2007) Fundamental electrical quantities in deep brain stimulation: influence of domain dimensions and boundary conditions. Conf Proc IEEE Eng Med Biol Soc 2007:6669–6672PubMedGoogle Scholar
  36. Löscher W, Horstermann D (1994) Differential effects of vigabatrin, gamma-acetylenic GABA, aminooxyacetic acid, and valproate on levels of various amino acids in rat brain regions and plasma. Naunyn Schmiedebergs Arch Pharmacol 349:270–278PubMedCrossRefGoogle Scholar
  37. Loup F, Picard F, Andre VM, Kehrli P, Yonekawa Y, Wieser HG et al (2006) Altered expression of alpha3-containing GABAA receptors in the neocortex of patients with focal epilepsy. Brain 129:3277–3289PubMedCrossRefGoogle Scholar
  38. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  39. Lujan JL, Chaturvedi A, McIntyre CC (2008) Tracking the mechanisms of deep brain stimulation for neuropsychiatric disorders. Front Biosci 13:5892–904PubMedCrossRefGoogle Scholar
  40. MacDermott AB, Role LW, Siegelbaum SA (1999) Presynaptic ionotropic receptors and the control of transmitter release. Annu Rev Neurosci 22:443–485PubMedCrossRefGoogle Scholar
  41. Macdonald RL, Olsen RW (1994) GABAA receptor channels. Annu Rev Neurosci 17:569–602PubMedGoogle Scholar
  42. Mantovani M, Van Velthoven V, Fuellgraf H, Feuerstein TJ, Moser A (2006) Neuronal electrical high frequency stimulation enhances GABA outflow from human neocortical slices. Neurochem Int 49:347–350PubMedCrossRefGoogle Scholar
  43. Marti M, Mela F, Ulazzi L, Hanau S, Stocchi S, Paganini F et al (2003) Differential responsiveness of rat striatal nerve endings to the mitochondrial toxin 3-nitropropionic acid: implications for Huntington's disease. Eur J NeuroSci 18:759–767PubMedCrossRefGoogle Scholar
  44. Martina M, Royer S, Pare D (2001) Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. J Neurophysiol 86:2887–2895PubMedGoogle Scholar
  45. Nicholls DG (1989) Release of glutamate, aspartate, and gamma-aminobutyric acid from isolated nerve terminals. J Neurochem 52:331–341PubMedCrossRefGoogle Scholar
  46. Payne JA (1997) Functional characterization of the neuronal-specific K–Cl cotransporter: implications for [K+]o regulation. Am J Physiol 273:C1516–C1525PubMedGoogle Scholar
  47. Payne JA, Rivera C, Voipio J, Kaila K (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26:199–206PubMedCrossRefGoogle Scholar
  48. Perlmutter JS, Mink JW (2006) Deep brain stimulation. Annu Rev Neurosci 29:229–257PubMedCrossRefGoogle Scholar
  49. Petroff OA, Behar KL, Mattson RH, Rothman DL (1996) Human brain gamma-aminobutyric acid levels and seizure control following initiation of vigabatrin therapy. J Neurochem 67:2399–2404PubMedCrossRefGoogle Scholar
  50. Pouzat C, Marty A (1999) Somatic recording of GABAergic autoreceptor current in cerebellar stellate and basket cells. J Neurosci 19:1675–1690PubMedGoogle Scholar
  51. Preece NE, Jackson GD, Houseman JA, Duncan JS, Williams SR (1994) Nuclear magnetic resonance detection of increased cortical GABA in vigabatrin-treated rats in vivo. Epilepsia 35:431–436PubMedCrossRefGoogle Scholar
  52. Raiteri M (2006) Functional pharmacology in human brain. Pharmacol Rev 58:162–193PubMedCrossRefGoogle Scholar
  53. Raiteri L, Raiteri M (2000) Synaptosomes still viable after 25 years of superfusion. Neurochem Res 25:1265–1274PubMedCrossRefGoogle Scholar
  54. Richerson GB, Wu Y (2003) Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J Neurophysiol 90:1363–1374PubMedCrossRefGoogle Scholar
  55. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K et al (1999) The K+/Cl-co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255PubMedCrossRefGoogle Scholar
  56. Rivera C, Voipio J, Thomas-Crusells J, Li H, Emri Z, Sipila S et al (2004) Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. J Neurosci 24:4683–4691PubMedCrossRefGoogle Scholar
  57. Rowley HL, Martin KF, Marsden CA (1995) Determination of in vivo amino acid neurotransmitters by high-performance liquid chromatography with o-phthalaldehyde-sulphite derivatisation. J Neurosci Methods 57:93–99PubMedCrossRefGoogle Scholar
  58. Ruiz A, Fabian-Fine R, Scott R, Walker MC, Rusakov DA, Kullmann DM (2003) GABAA receptors at hippocampal mossy fibers. Neuron 39:961–973PubMedCrossRefGoogle Scholar
  59. Ruusuvuori E, Li H, Huttu K, Palva JM, Smirnov S, Rivera C et al (2004) Carbonic anhydrase isoform VII acts as a molecular switch in the development of synchronous gamma-frequency firing of hippocampal CA1 pyramidal cells. J Neurosci 24:2699–2707PubMedCrossRefGoogle Scholar
  60. Santos MS, Rodriguez R, Carvalho AP (1992) Effect of depolarizing agents on the Ca2+-independent and Ca2+-dependent release of [3H]GABA from sheep brain synaptosomes. Biochem Pharmacol 22:301–308CrossRefGoogle Scholar
  61. Schousboe A, Krogsgaard-Larsen P, Svenneby G, Hertz L (1978) Inhibition of the high-affinity, net uptake of GABA into cultured astrocytes by beta-proline, nipecotic acid and other compounds. Brain Res 153:623–626PubMedCrossRefGoogle Scholar
  62. Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem 2:795–816PubMedCrossRefGoogle Scholar
  63. Smith S, Sharp T (1994) Measurement of GABA in rat brain microdialysates using o-phthaldialdehyde-sulphite derivatization and high-performance liquid chromatography with electrochemical detection. J Chromatogr 652:228–233PubMedCrossRefGoogle Scholar
  64. Staley KJ, Soldo BL, Proctor WR (1995) Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269:977–981PubMedCrossRefGoogle Scholar
  65. Suzdak PD, Frederiksen K, Andersen KE, Sorensen PO, Knutsen LJ, Nielsen EB (1992) NNC-711, a novel potent and selective gamma-aminobutyric acid uptake inhibitor: pharmacological characterization. Eur J Pharmacol 224:189–98PubMedCrossRefGoogle Scholar
  66. Szabadics J, Varga C, Molnar G, Olah S, Barzo P, Tamas G (2006) Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311:233–235PubMedCrossRefGoogle Scholar
  67. Szerb JC (1979) Relationship between Ca2+-dependent and independent release of [3H]GABA evoked by high K+, veratridine or electrical stimulation from rat cortical slices. J Neurochem 32:1565–1573PubMedCrossRefGoogle Scholar
  68. Thompson SM, Deisz RA, Prince DA (1988) Outward chloride/cation co-transport in mammalian cortical neurons. Neurosci Lett 89:49–54PubMedCrossRefGoogle Scholar
  69. Thompson SA, Arden SA, Marshall G, Wingrove PB, Whiting PJ, Wafford KA (1999) Residues in transmembrane domains I and II determine gamma-aminobutyric acid type AA receptor subtype-selective antagonism by furosemide. Mol Pharmacol 55:993–999PubMedGoogle Scholar
  70. Turecek R, Trussell LO (2002) Reciprocal developmental regulation of presynaptic ionotropic receptors. Proc Natl Acad Sci U S A 99:13884–13889PubMedCrossRefGoogle Scholar
  71. Van Aubel RA, Masereeuw R, Russel FG (2000) Molecular pharmacology of renal organic anion transporters. Am J Physiol Renal Physiol 279:F216–F232PubMedGoogle Scholar
  72. Verhage M, Besselsen E, Lopes da Silva FH, Ghijsen WE (1989) Ca2+-dependent regulation of presynaptic stimulus-secretion coupling. J Neurochem 53:1188–1194PubMedCrossRefGoogle Scholar
  73. Vitek JL (2008) Deep brain stimulation: how does it work? Cleve Clin J Med 75(Suppl 2):S59–S65PubMedCrossRefGoogle Scholar
  74. Volkmann J, Herzog J, Kopper F, Deuschl G (2002) Introduction to the programming of deep brain stimulators. Mov Disord 17(Suppl 3):S181–S187PubMedCrossRefGoogle Scholar
  75. Wafford KA, Thompson SA, Thomas D, Sikela J, Wilcox AS, Whiting PJ (1996) Functional characterization of human gamma-aminobutyric acidA receptors containing the alpha 4 subunit. Mol Pharmacol 50:670–678PubMedGoogle Scholar
  76. Wichmann T, Delong MR (2006) Deep brain stimulation for neurologic and neuropsychiatric disorders. Neuron 52:197–204PubMedCrossRefGoogle Scholar
  77. Wood JD, Kurylo E, Lane R (1988) gamma-Aminobutyric acid release from synaptosomes prepared from rats treated with isonicotinic acid hydrazide and gabaculine. J Neurochem 50:1839–1843PubMedCrossRefGoogle Scholar
  78. Wu Y, Wang W, Richerson GB (2001) GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter. J Neurosci 21:2630–2639PubMedGoogle Scholar
  79. Zhang SJ, Jackson MB (1993) GABA-activated chloride channels in secretory nerve endings. Science 259:531–534PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Michela Mantovani
    • 1
  • Andreas Moser
    • 2
  • Carola A. Haas
    • 3
  • Josef Zentner
    • 4
  • Thomas J. Feuerstein
    • 1
    Email author
  1. 1.Section of Clinical Neuropharmacology, Department of NeurosurgeryUniversity Hospital FreiburgFreiburgGermany
  2. 2.Neurochemical Research Group, Department of NeurologyUniversity of LübeckLübeckGermany
  3. 3.Experimental Epilepsy Group, Department of NeurosurgeryUniversity Hospital FreiburgFreiburgGermany
  4. 4.Department of NeurosurgeryUniversity Hospital FreiburgFreiburgGermany

Personalised recommendations