Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 379, Issue 4, pp 361–369 | Cite as

Effects of gabapentin and pregabalin on K+-evoked 3H-GABA and 3H-glutamate release from human neocortical synaptosomes

  • B. Brawek
  • M. Löffler
  • A. Weyerbrock
  • T. J. Feuerstein
Original Article

Abstract

One site of action of the anticonvulsant, analgesic, and anxiolytic drugs gabapentin and pregabalin is the α2δ-subunit of voltage-sensitive Ca2+ channels (VSCC). We therefore analyzed the effects of gabapentin and pregabalin on K+-evoked release of 3H-γ-aminobutyric acid (GABA) and 3H-glutamate from superfused human neocortical synaptosomes. These neurotransmitters are released by Ca2+-dependent exocytosis and by Ca2+-independent uptake reversal. When a GABA transport inhibitor was present throughout superfusion to isolate exocytotic conditions, gabapentin and pregabalin (100 μM each) reduced K+-evoked 3H-GABA release by 39% and 47%, respectively. These effects were antagonized by the α2δ-ligand l-isoleucine (1 μM) suggesting the α2δ-subunit of terminal VSCC to mediate the reduction of exocytosis. Both drugs had no effect on exocytotic 3H-glutamate release and also failed to modulate the release of 3H-GABA and 3H-glutamate caused by reversed uptake in the absence of external Ca2+. Thus, an inhibition of glutamate release by gabapentin and pregabalin as main anticonvulsant principle is not supported by our experiments. An anticonvulsant mode of action of both drugs may be the reduction of a proconvulsant exocytotic GABA release.

Keywords

Gabapentin Pregabalin GABA release Glutamate release Human neocortex 

References

  1. Allen NJ, Karadottir R, Attwell D (2004) Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy. Pflügers Arch-Eur J Physiol 449:132–142CrossRefGoogle Scholar
  2. Bayer K, Ahmadi S, Zeilhofer HU (2004) Gabapentin may inhibit synaptic transmission in the mouse spinal cord dorsal horn through a preferential block of PQ-type Ca2+ channels. Neuropharmacology 46:743–749PubMedCrossRefGoogle Scholar
  3. Bedwani JR, Songra AK, Trueman CJ (1984) Influence of aminoxyacetic acid on the potassium-evoked release of 3H-γ-aminobutyric acid from slices of rat cerebral cortex. Neurochem Res 9:1101–1108PubMedCrossRefGoogle Scholar
  4. Belliotti T, Ekhato IV, Capiris T, Kinsora J, Vartanian MG, Field M, Meltzer LT, Heffner T, Schwarz JB, Taylor CP, Thorpe A, Wise L, Su T-Z, Weber ML, Wustrow DJ (2005) Structure-activity relationships of pregabalin and analogs that target the alpha2-delta protein. J Med Chem 48:2294–2307PubMedCrossRefGoogle Scholar
  5. Bian F, Li Z, Offord JD, Davis MD, McCormick JA, Taylor CP, Walker LC (2006) Calcium channel alpha2-delta type 1 subunit is the major binding protein for pregabalin in neocortex, hippocampus, amygdale, and spinal cord: an ex vivo audioradiographic study in alpha2-delta type 1 genetically modified mice. Brain Res 1075:68–80PubMedCrossRefGoogle Scholar
  6. Brawek B, Löffler M, Dooley DJ, Weyerbrock A, Feuerstein TJ (2008) Differential modulation of K+-evoked 3H-neurotransmitter release from human neocortex by gabapentin and pregabalin. Naunyn-Schmiedeberg’s Arch Pharmacol 376:301–307CrossRefGoogle Scholar
  7. Brown JT, Randall A (2005) Gabapentin fails to alter P/Q-type Ca2+ channel-mediated synaptic transmission in the hippocampus in vitro. Synapse 55:262–269PubMedCrossRefGoogle Scholar
  8. Cohen I, Navarro V, Le Duigou C, Miles R (2003) Mesial temporal lobe epilepsy: a pathological replay of developmental mechanisms? Biol Cell 95:329–333PubMedCrossRefGoogle Scholar
  9. Cole RL, Lechner SM, Williams ME, Prodanovich P, Bleichner L, Varney MA, Gu G (2005) Differential distribution of voltage-gated calcium channel alpha-2 delta (α2δ) subunit mRNA-containing cells in the rat central nervous system and the dorsal root ganglia. J Comp Neurol 491:246–269PubMedCrossRefGoogle Scholar
  10. Cossart R, Bernard C, Ben-Ari Y (2005) Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signaling in epilepsies. Trends Neurosci 28:108–115PubMedCrossRefGoogle Scholar
  11. Cunningham MO, Woodhall GL, Thompson SE, Dooley DJ, Jones RSG (2004) Dual effects of gabapentin and pregabalin on glutamate release at rat entorhinal synapses in vitro. Eur J Neuosci 20:1566–1576CrossRefGoogle Scholar
  12. Dooley DJ, Donovan CM, Pugsley TA (2000a) Stimulus-dependent modulation of 3H-norepinephrine release from rat neocortical slices by gabapentin and pregabalin. J Pharmacol Exp Ther 295:1086–1093PubMedGoogle Scholar
  13. Dooley DJ, Mieske CA, Borosky SA (2000b) Inhibition of K+-evoked glutamate release from rat neocortical and hippocampal slices by gabapentin. Neurosci Lett 280:107–110PubMedCrossRefGoogle Scholar
  14. Dooley DJ, Taylor CP, Donevan S, Feltner D (2007) Ca2+ channel α2δ-ligands: novel modulators of neurotransmission. Trends Pharmacol Sci 28:75–82PubMedCrossRefGoogle Scholar
  15. Götz E, Feuerstein TJ, Lais A, Meyer DK (1993) Effects of gabapentin on release of γ-aminobutyric acid from slices of rat neostriatum. Drug Res 43:636–638Google Scholar
  16. Gulledge AT, Stuart GT (2003) Excitatory actions of GABA in the cortex. Neuron 37:299–309PubMedCrossRefGoogle Scholar
  17. Honmou O, Oyelese AA, Kocsis JD (1995) The anticonvulsant gabapentin enhances promoted release of GABA in hippocampus: a field potential analysis. Brain Res 692:273–277PubMedCrossRefGoogle Scholar
  18. Kauppinen RA, Sihra TS, Nicholls DG (1987) Aminooxyacetic acid inhibits the maleate–aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochim Biophys Acta 930:173–178PubMedCrossRefGoogle Scholar
  19. Lynch JJ, Honore P, Anderson DJ, Bunnelle WH, Mortell KH, Zhong C, Wade CL, Zhu CZ, Xu H, Marsh KC, Lee C-H, Jarvis MF, Gopalakrishnan M (2006) (L)-phenylglycine, but not necessarily other α2δ-subunit voltage-gated calcium channels ligands, attenuates neuropathic pain in rats. Pain 125:136–142PubMedCrossRefGoogle Scholar
  20. Luer MS, Hamani C, Dujovni M, Gidal B, Cwik M, Deyo K, Fischer JH (1999) Saturable transport of gabapentin at the blood brain barrier. Neurol Res 21:559–562PubMedGoogle Scholar
  21. Nicholls DG (1989) Release of glutamate, aspartate, and γ-aminobutyric acid from isolated nerve terminals. J Neurochem 52:331–341PubMedCrossRefGoogle Scholar
  22. Nicholls DG (1993) The glutamatergic nerve terminal. Eur J Biochem 212:613–631PubMedCrossRefGoogle Scholar
  23. Palma E, Amici M, Sobrero F, Spinelli G, Di Angelantonio S, Ragazzino D, Mascia A, Scoppetta C, Esposito V, Miledi R, Eusebi F (2006) Anomalous levels of Cl transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. Proc Natl Acad Sci 103:8465–8468PubMedCrossRefGoogle Scholar
  24. Raiteri L, Raiteri M (2000) Synaptosomes still viable after 25 years of superfusion. Neurochem Res 25:1265–1274PubMedCrossRefGoogle Scholar
  25. Raiteri M, Sala R, Fassio A, Rossetto O, Bonanno G (2000) Entrapping of impermeable probes of different size into nonpermeabilized synaptosomes as a method to study presynaptic mechanisms. J Neurochem 74:423–431PubMedCrossRefGoogle Scholar
  26. Raiteri L, Stigliani S, Zedda L, Raiteri M, Bonanno G (2002) Multiple mechanisms of transmitter release evoked by “pathologically” elevated extracellular [K+]: involvement of transporter reversal and mitochondrial calcium. J Neurochem 80:706–714PubMedCrossRefGoogle Scholar
  27. Richerson GB, Wu Y (2003) Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J Neurophysiol 90:1363–1374PubMedCrossRefGoogle Scholar
  28. Rock DM, Kelly KM, Macdonald RL (1993) Gabapentin actions on ligand- and voltage-gated responses in cultured rodent neurons. Epilepsy Res 16:89–98PubMedCrossRefGoogle Scholar
  29. Santos MS, Rodriguez R, Carvalho AP (1992) Effect of depolarizing agents on the release of Ca2+-independent and Ca2+-dependent release of 3H-GABA from sheep brain synaptosomes. Biochem Pharmacol 44:301–308PubMedCrossRefGoogle Scholar
  30. Schumacher TB, Beck H, Steinhauser C, Schramm J, Elger CE (1998) Effects of phenytoin, carbamazepine, and gabapentin on calcium channels in hippocampal granule cells from patients with temporal lobe epilepsy. Epilepsia 39:355–363PubMedCrossRefGoogle Scholar
  31. Sills GJ (2006) The mechanism of action of gabapentin and pregabalin. Curr Opin Pharmacol 6:108–113PubMedCrossRefGoogle Scholar
  32. Stefani A, Spadoni F, Bernardi G (1998) Gabapentin inhibits calcium currents in isolated rat brain neurons. Neuropharmacology 37:83–91PubMedCrossRefGoogle Scholar
  33. Taylor CP, Gee NS, Su T-Z, Kocsis JD, Welty DV, Brown JP, Dooley D, Boden P, Singh L (1998) A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res 29:233–249PubMedCrossRefGoogle Scholar
  34. Taylor CP, Angelotti T, Fauman E (2007) Pharmacology and mechanism of action of pregabalin: the calcium channel α2-δ (alpha2-delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res 73:137–150PubMedCrossRefGoogle Scholar
  35. Thurlow RJ, Hill DR, Woodruff GN (1996a) Comparison of the uptake of [3H]-gabapentin with the uptake of L-[3H]-leucine into rat brain synaptosomes. Br J Pharmacol 118:449–156PubMedGoogle Scholar
  36. Thurlow RJ, Hill DR, Woodruff GN (1996b) Comparison of the audiographic binding distribution of [3H]-gabapentin with excitatory amino acid receptor and amino acid uptake site distributions in the brain. Br J Pharmacol 118:457–465PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • B. Brawek
    • 1
    • 2
  • M. Löffler
    • 1
  • A. Weyerbrock
    • 3
  • T. J. Feuerstein
    • 1
  1. 1.Section of Clinical Neuropharmacology, NeurozentrumUniversity of FreiburgFreiburgGermany
  2. 2.Faculty of BiologyUniversity of FreiburgFreiburgGermany
  3. 3.Department of Neurosurgery, NeurozentrumUniversity of FreiburgFreiburgGermany

Personalised recommendations