Chronic inhibition of dipeptidyl peptidase-IV with ASP8497 improved the HbA1c level, glucose intolerance, and lipid parameter level in streptozotocin–nicotinamide-induced diabetic mice

  • Akiko Matsuyama-Yokono
  • Atsuo Tahara
  • Ryosuke Nakano
  • Yuka Someya
  • Masahiko Hayakawa
  • Masayuki Shibasaki
Original Article


Dipeptidyl peptidase-IV (DPP-IV) is the primary inactivator of glucoregulatory incretin hormones, and DPP-IV inhibitors are expected to become a useful new class of anti-diabetic agent. The aim of the present study is to characterize the chronic in vivo profile of the DPP-IV inhibitor ASP8497. In streptozotocin-nicotinamide-induced diabetic mice, ASP8497 was administered orally for 3 weeks at 1, 3, or 10 mg/kg once daily, which improved the hemoglobin A1c, non-fasting plasma insulin, fasting blood glucose levels, glucose intolerance, and lipid profiles (plasma triglyceride, non-esterified fatty acid and total cholesterol) with neutral effect on body weight. The pancreatic insulin content and hepatic phosphoenolpyruvate carboxykinase (PEPCK) activity recovered dose-dependently in ASP8497-treated groups. These results revealed that ASP8497 was successful in improving glycemic control and metabolic parameters in streptozotocin-nicotinamide-induced diabetic mice. It is therefore suggested that ASP8497 may be a potential agent for the treatment of type 2 diabetes.


ASP8497 Dipeptidyl peptidase-IV Glucagon-like peptide-1 Diabetes 



The authors would like to thank Drs. Toichi Takenaka, Isao Yanagisawa, Yasuaki Shimizu, Tetsuo Matsui, and Yutaka Yanagita (Astellas Pharma Inc.) for their valuable comments and continuing encouragement. The authors would also like to thank Mr. Masanori Yokono (Astellas Pharma Inc.) for his suggestions regarding the preparation of this manuscript.


  1. American Diabetes Association (2001) Postprandial blood glucose. Diabetes Care 24:775–778CrossRefGoogle Scholar
  2. American Diabetes Association (2004) Standards of medical care in diabetes. Diabetes Care 27(Suppl.1):S15–35Google Scholar
  3. Asplund K, Wiholm BE, Lithner F (1983) Glibenclamide-associated hypoglycaemia: a report on 57 cases. Diabetologia 24:412–417PubMedCrossRefGoogle Scholar
  4. Basu R, Chandramouli V, Dicke B, Landau B, Rizza R (2005) Obesity and type 2 diabetes impair insulin-induced suppression of glycogenolysis as well as gluconeogenesis. Diabetes 54:1942–1948PubMedCrossRefGoogle Scholar
  5. Boden G, Chen X, Stein P (2001) Gluconeogenesis in moderately and severely hyperglycemic patients with type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 280:E23–E30PubMedGoogle Scholar
  6. Deacon CF, Johnsen AH, Holst JJ (1995a) Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol 80:952–957CrossRefGoogle Scholar
  7. Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ (1995b) Both subcutaneously and intravenously administered glucagon-like peptide 1 are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 44:1126–1131PubMedCrossRefGoogle Scholar
  8. Drucker DJ (2001) Development of glucagon-like peptide-1 based pharmaceuticals as therapeutic agents for the treatment of diabetes. Curr Pharm Des 7:1399–1412PubMedCrossRefGoogle Scholar
  9. Drucker DJ (2007) The role of gut hormones in glucose homeostasis. J Clin Invest 117:24–32PubMedCrossRefGoogle Scholar
  10. Ebert R, Nauck M, Creutzfeldt W (1991) Effect of exogenous or endogenous gastric inhibitory polypeptide (GIP) on plasma triglyceride responses in rats. Horm Metab Res 23:517–521PubMedCrossRefGoogle Scholar
  11. Farilla L, Hui H, Bertolotto C, Kang E, Bulotta A, Di Mario U, Perfetti R (2002) Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 143:4397–4408PubMedCrossRefGoogle Scholar
  12. Hansen L, Deacon CF, Orskov C, Holst JJ (1999) Glucagon-like peptide-1-(7–36)amide is transformed to glucagon-like peptide-1-(9–36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 140:5356–5363PubMedCrossRefGoogle Scholar
  13. Harrower AD (1994) Comparison of efficacy, secondary failure rate, and complications of sulfonylureas. J Diabet Complications 8:201–203CrossRefGoogle Scholar
  14. Holst JJ, Deacon CF (1998) Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for type 2 diabetes. Diabetes 47:1663–1670PubMedCrossRefGoogle Scholar
  15. Holst JJ, Deacon CF (2004) Glucagon-like-peptide 1 and inhibitors of dipeptidyl peptidase IV in the treatment of type 2 diabetes mellitus. Curr Opin Pharmacol 4:589–596PubMedCrossRefGoogle Scholar
  16. Kieffer TJ, McIntoch CH, Pederson RA (1995) Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide-1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136:3585–3596PubMedCrossRefGoogle Scholar
  17. Knauf C, Cani PD, Perrin C, Iglesias MA, Maury JF, Bernard E, Benhamed F, Grémeaux T, Drucker DJ, Kahn R, Girard J, Tanti JF, Delzenne NM, Postic C, Burcekin R (2005) Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest 115:3554–3563PubMedCrossRefGoogle Scholar
  18. Kosaka K, Kuzuya T, Hagura R (1994) Insulin secretary response in Japanese type 2 (non-insulin-dependent) diabetic patients. Diabetes Res Clin Pract 24:S101–110PubMedCrossRefGoogle Scholar
  19. Li L, Yang G, Li Q, Tan X, Liu H, Tang Y, Boden G (2008) Exenatide prevents fat-induced insulin resistance and raises adiponectin expression and plasma levels. Diabetes Obes Metab (in press)Google Scholar
  20. Lupi R, Dotta F, Marselli L, Del Guerra S, Masini M, Santangelo C, Patane G, Boggi U, Piro S, Anello M, Bergamini E, Mosca F, Di Mario U, Del Prato S, Marchetti P (2002) Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that b-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 51:1437–1442PubMedCrossRefGoogle Scholar
  21. Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D et al (1998) Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47:224–229PubMedCrossRefGoogle Scholar
  22. Matikainen N Mänttäri S, Schweizer A, Ulvestad A, Mills D, Dunning BE, Foley JE, Taskinen M-R (2006) Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia 49:2049–2057CrossRefGoogle Scholar
  23. Matsuyama-Yokono A, Tahara A, Nakano R, Someya Y, Nagase I, Hayakawa M, Shibasaki M (2008) ASP8497 is a novel selective and competitive dipeptidyl peptidase-IV inhibitor with antihyperglycemic activity. Biochem Pharmcol 76:98–107CrossRefGoogle Scholar
  24. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and b-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  25. Meier JJ, Nauck MA (2006) Incretins and the development of type 2 diabetes. Curr Diab Rep 6:194–201PubMedCrossRefGoogle Scholar
  26. Mentlein R (1999) Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul Pept 85:9–24PubMedCrossRefGoogle Scholar
  27. Morifuji M, Sakai K, Sugiura K (2005) Dietary whey protein modulates liver glycogen level and glycoregulatory enzyme activities in exercise-trained rats. Exp Biol Med 230:23–30Google Scholar
  28. Mu J, Woods J, Zhou YP, Roy RS, Li Z, Zycband E, Feng Y, Zhu, Li C, Howard AD, Moller DE, Thornberry NA, Zhang BB (2006) Chronic inhibition of dipeptidyl peptidase-4 with sitagliptin analog preserves pancreatic {beta}-cell mass and function in a rodent model of type 2 diabetes. Diabetes 55:1695–1704PubMedCrossRefGoogle Scholar
  29. Pederson RA, White HA, Schlenzig D, Pauly RP, McIntoch CH, Deemuth H-U (1998) Improved glucose tolerance in Zucker fatty rats by oral administration of the dipeptidyl peptidase IV inhibitor isoleucine thiazolidide. Diabetes 47:1253–1258PubMedCrossRefGoogle Scholar
  30. Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Beebe C, Frank BH, Galloway JA, Van Cauter E (1988) Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med 318:1231–1239PubMedGoogle Scholar
  31. Porte D (1991) b-cells in type II diabetes mellitus. Diabetes 40:166–180PubMedCrossRefGoogle Scholar
  32. Pospisilik JA, Martin J, Doty T, Ehses JA, Pamir N, Lynn FC, Piteau S, Demuth HU, McIntoch CH, Pederson RA (2003) Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 52:741–750PubMedCrossRefGoogle Scholar
  33. Qin X, Shen H, Liu M, Yang Q, Zheng S, Sabo M, D’Alessio DA, Tso P (2005) GLP-1 reduces intestinal lymph flow, triglyceride absorption, and apolipoprotein production in rats. Am J Physiol Gastrointest Liver Physiol 288:G943–949PubMedCrossRefGoogle Scholar
  34. Raz I, Hanefeld M, Xu L, Caria C, Williams-Herman D, Khatami H, Sitagliptin Study 023 Group (2006) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 49:2564–2571PubMedCrossRefGoogle Scholar
  35. Reimer MK, Holst JJ, Ahren B (2002) Long-term inhibition of dipeptidyl peptidase IV improves glucose tolerance and preserves islet function in mice. Eur J Endocrinol 146:717–727PubMedCrossRefGoogle Scholar
  36. Rosenstock J, Baron MA, Dejager S, Mills D, Schweizer A (2007) Comparison of vildagliptin and rosiglitazone monotherapy in patients with type 2 diabetes: a 24-week, double-blind, randomized trial. Diabetes Care 30:217–223PubMedCrossRefGoogle Scholar
  37. Someya Y, Tahara A, Nakano R, Matsuyama-Yokono A, Nagase I, Fukunaga Y, Takasu T, Hayakawa M, Shibasaki M (2008) Pharmacological profile of ASP8497, a novel, selective, and competitive dipeptidyl peptidase-IV inhibitor, in vitro and in vivo. Naunyn Schmiedebergs Arch Pharmacol 377:209–217PubMedCrossRefGoogle Scholar
  38. Stahl M, Berger W (1999) Higher incidence of severe hypoglycaemia leading to hospital admission in type 2 diabetic patients treated with long-acting versus short-acting sulphonylureas. Diabet Med 16:586–590PubMedCrossRefGoogle Scholar
  39. Sudre B, Broqua P, White RB, Ashworth D, Evans DM, Haigh R, Junien JL Aubert ML (2002) Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male Zucker diabetic fatty rats. Diabetes 51:1461–1469PubMedCrossRefGoogle Scholar
  40. Taylor SI, Accili D, Imai Y (1994) Insulin resistance or insulin deficiency. Which is the primary cause of NIDDM? Diabetes 43:735–740PubMedGoogle Scholar
  41. Trumper A, Trumper K, Trusheim H, Arnold R, Goke B, Horsch D (2001) Glucose-dependent insulinotropic polypeptide is a growth factor for b (INS-1) cells by pleiotropic signaling. Mol Endocrinol 15:1559–1570PubMedCrossRefGoogle Scholar
  42. Unger RH (1995) Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications. Diabetes 44:863–870PubMedCrossRefGoogle Scholar
  43. Wasada T, McCorkle K, Virginia H, Kawai K, Howard B, Unger RH (1981) Effect of gastric inhibitory polypeptide on plasma levels of chylomicron triglycerides in dogs. J Clin Invest 68:1106–1107PubMedCrossRefGoogle Scholar
  44. Weyer C, Bogardu C, Mott DM, Pratley RE (1999) The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 104:787–794PubMedCrossRefGoogle Scholar
  45. Young AA, Gedulin BR, Bhavsar S, Bodkin N, Jodka C, Hansen B, Denaro M (1999) Glucose-Lowering and Insulin-Sensitizing Actions of Exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats and diabetic rhesus monkeys (Macaca mulatta). Diabetes 48:1026–1034PubMedCrossRefGoogle Scholar
  46. Zhou YP, Grill VE (1994) Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Invest 93:870–876PubMedCrossRefGoogle Scholar
  47. Zimmerman BR (1997) Sulfonylureas. Endocrinol Metab Clin North Am 26:511–522PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Akiko Matsuyama-Yokono
    • 1
  • Atsuo Tahara
    • 1
  • Ryosuke Nakano
    • 1
  • Yuka Someya
    • 1
  • Masahiko Hayakawa
    • 1
  • Masayuki Shibasaki
    • 1
  1. 1.Drug Discovery ResearchAstellas Pharma Inc.IbarakiJapan

Personalised recommendations