Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 377, Issue 1, pp 65–76

Adenosine receptor subtype-selective antagonists in inflammation and hyperalgesia

  • Andras Bilkei-Gorzo
  • Osama M. Abo-Salem
  • Alaa M. Hayallah
  • Kerstin Michel
  • Christa E. Müller
  • Andreas Zimmer
Original Article

Abstract

In this study, we examined the effects of systemic and local administration of the subtype-selective adenosine receptor antagonists PSB-36, PSB-1115, MSX-3, and PSB-10 on inflammation and inflammatory hyperalgesia. Pharmacological blockade of adenosine receptor subtypes after systemic application of antagonists generally led to a decreased edema formation after formalin injection and, with the exception of A3 receptor antagonism, also after the carrageenan injection. The selective A2B receptor antagonist PSB-1115 showed a biphasic, dose-dependent effect in the carrageenan test, increasing edema formation at lower doses and reducing it at a high dose. A1 and A2B antagonists diminished pain-related behaviors in the first phase of the formalin test, while the second, inflammatory phase was attenuated by A2B and A3 antagonists. The A2B antagonist was particularly potent in reducing inflammatory pain dose-dependently reaching the maximum effect at a low dose of 3 mg/kg. Inflammatory hyperalgesia was totally eliminated by the A2A antagonist MSX-3 at a dose of 10 mg/kg. In contrast to the A1 antagonist, the selective antagonists of A2A, A2B, and A3 receptors were also active upon local administration. Our results demonstrate that the blockade of adenosine receptor subtypes can decrease the magnitude of inflammatory responses. Selective A2A antagonists may be useful for the treatment of inflammatory hyperalgesia, while A2B antagonists have potential as analgesic drugs for the treatment of inflammatory pain.

Keywords

Adenosine receptors A1 A2A A2B A3 Antagonist Formalin Carrageenan Edema Inflammatory pain Hyperalgesia 

References

  1. Abo-Salem OM, Hayallah AM, Bilkei-Gorzo A, Filipek B, Zimmer A, Muller CE (2004) Antinociceptive effects of novel A2B adenosine receptor antagonists. J Pharmacol Exp Ther 308:358–366PubMedCrossRefGoogle Scholar
  2. Akkari R, Burbiel JC, Hockemeyer J, Muller CE (2006) Recent progress in the development of adenosine receptor ligands as antiinflammatory drugs. Curr Top Med Chem 6:1375–1399PubMedGoogle Scholar
  3. Antonioli L, Fornai M, Colucci R, Ghisu N, Da Settimo F, Natale G, Kastsiuchenka O, Duranti E, Virdis A, Vassalle C, La Motta C, Mugnaini L, Breschi MC, Blandizzi C, Del Taca M (2007) Inhibition of adenosine deaminase attenuates inflammation in experimental colitis. J Pharmacol Exp Ther 322:435–442PubMedCrossRefGoogle Scholar
  4. Auchampach JA, Jin X, Wan TC, Caughey GH, Linden J (1997) Canine mast cell adenosine receptors: cloning and expression of the A3 receptor and evidence that degranulation is mediated by the A2B receptor. Mol Pharmacol 52:846–860PubMedGoogle Scholar
  5. Bookser BC, Ugarkar BG, Matelich MC, Lemus RH, Allan M, Tsuchiya M, Nakane M, Nagahisa A, Wiesner JB, Erion MD (2005) Adenosine kinase inhibitors. 6. Synthesis, water solubility, and antinociceptive activity of 5-phenyl-7-(5-deoxy-beta-d-ribofuranosyl)pyrrolo[2,3-d]pyrimidines substituted at C4 with glycinamides and related compounds. J Med Chem 48:7808–7820PubMedCrossRefGoogle Scholar
  6. Boughton-Smith NK, Deakin AM, Follenfant RL, Whittle BJ, Garland LG (1993) Role of oxygen radicals and arachidonic acid metabolites in the reverse passive Arthus reaction and carrageenin paw oedema in the rat. Br J Pharmacol 110:896–902PubMedGoogle Scholar
  7. Boyer SH, Ugarkar BG, Solbach J, Kopcho J, Matelich MC, Ollis K, Gomez-Galeno JE, Mendonca R, Tsuchiya M, Nagahisa A, Nakane M, Wiesner JB, Erion MD (2005) Adenosine kinase inhibitors. 5. Synthesis, enzyme inhibition, and analgesic activity of diaryl-erythro-furanosyltubercidin analogues. J Med Chem 48:6430–6441PubMedCrossRefGoogle Scholar
  8. Cadieux JS, Leclerc P, St-Onge M, Dussault AA, Laflamme C, Picard S, Ledent C, Borgeat P, Pouliot M (2005) Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal. J Cell Sci 118:1437–1447PubMedCrossRefGoogle Scholar
  9. Day YJ, Huang L, Ye H, Li L, Linden J, Okusa MD (2006) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma. J Immunol 176:3108–3114PubMedGoogle Scholar
  10. Dixon AK, Gubitz AK, Sirinathsinghji DJ, Richardson PJ, Freeman TC (1996) Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 118:1461–1468PubMedGoogle Scholar
  11. Dowd E, McQueen DS, Chessell IP, Humphrey PP (1998) Adenosine A1 receptor-mediated excitation of nociceptive afferents innervating the normal and arthritic rat knee joint. Br J Pharmacol 125:1267–1271PubMedCrossRefGoogle Scholar
  12. Esquisatto LC, Costa SK, Camargo EA, Ribela MT, Brain SD, de Nucci G, Antunes E (2001) The plasma protein extravasation induced by adenosine and its analogues in the rat dorsal skin: evidence for the involvement of capsaicin sensitive primary afferent neurones and mast cells. Br J Pharmacol 134:108–115PubMedCrossRefGoogle Scholar
  13. Feoktistov I, Biaggioni I (1996) Role of adenosine in asthma. Drug Dev Res 39:333–336PubMedCrossRefGoogle Scholar
  14. Fiebich BL, Biber K, Gyufko K, Berger M, Bauer J, van Calker D (1996a) Adenosine A2b receptors mediate an increase in interleukin (IL)-6 mRNA and IL-6 protein synthesis in human astroglioma cells. J Neurochem 66:1426–1431PubMedCrossRefGoogle Scholar
  15. Fiebich BL, Biber K, Lieb K, van Calker D, Berger M, Bauer J, Gebicke-Haerter PJ (1996b) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. Glia 18:152–160PubMedCrossRefGoogle Scholar
  16. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552PubMedGoogle Scholar
  17. Hasko G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25:33–39PubMedCrossRefGoogle Scholar
  18. Hockemeyer J, Burbiel JC, Muller CE (2004) Multigram-scale syntheses, stability, and photoreactions of A2A adenosine receptor antagonists with 8-styrylxanthine structure: potential drugs for Parkinson's disease. J Org Chem 69:3308–3318PubMedCrossRefGoogle Scholar
  19. Honore P, Buritova J, Chapman V, Besson JM (1998) UP 202–56, an adenosine analogue, selectively acts via A1 receptors to significantly decrease noxiously-evoked spinal c-Fos protein expression. Pain 75:281–293PubMedCrossRefGoogle Scholar
  20. Jacker HJ, Richter J (1975) Possibilities and limitations of the use of rat paw edemas as models of inflammation. 1. Review on edemas as models and their possible use. Pharmazie 30:417–422PubMedGoogle Scholar
  21. Jacobson KA (1998) Adenosine A3 receptors: novel ligands and paradoxical effects. Trends Pharmacol Sci 19:184–191PubMedCrossRefGoogle Scholar
  22. Jarvis MF, Yu H, McGaraughty S, Wismer CT, Mikusa J, Zhu C, Chu K, Kohlhaas K, Cowart M, Lee CH, Stewart AO, Cox BF, Polakowski J, Kowaluk EA (2002) Analgesic and anti-inflammatory effects of A-286501, a novel orally active adenosine kinase inhibitor. Pain 96:107–118PubMedCrossRefGoogle Scholar
  23. Kalda A, Yu L, Oztas E, Chen JF (2006) Novel neuroprotection by caffeine and adenosine A(2A) receptor antagonists in animal models of Parkinson's disease. J Neurol Sci 248:9–15PubMedCrossRefGoogle Scholar
  24. Karlsten R, Gordh T, Post C (1992) Local antinociceptive and hyperalgesic effects in the formalin test after peripheral administration of adenosine analogues in mice. Pharmacol Toxicol 70:434–438PubMedCrossRefGoogle Scholar
  25. Kolachala V, Asamoah V, Wang L, Obertone TS, Ziegler TR, Merlin D, Sitaraman SV (2005) TNF-alpha upregulates adenosine 2b (A2b) receptor expression and signaling in intestinal epithelial cells: a basis for A2bR overexpression in colitis. Cell Mol Life Sci 62:2647–2657PubMedCrossRefGoogle Scholar
  26. Konig M, Zimmer AM, Steiner H, Holmes PV, Crawley JN, Brownstein MJ, Zimmer A (1996) Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383:535–538PubMedCrossRefGoogle Scholar
  27. Kowaluk EA, Jarvis MF (2000) Therapeutic potential of adenosine kinase inhibitors. Expert Opin Investig Drugs 9:551–564PubMedCrossRefGoogle Scholar
  28. Kowaluk EA, Kohlhaas KL, Bannon A, Gunther K, Lynch JJ 3rd, Jarvis MF (1999) Characterization of the effects of adenosine kinase inhibitors on acute thermal nociception in mice. Pharmacol Biochem Behav 63:83–91PubMedCrossRefGoogle Scholar
  29. Kowaluk EA, Mikusa J, Wismer CT, Zhu CZ, Schweitzer E, Lynch JJ, Lee CH, Jiang M, Bhagwat SS, Gomtsyan A, McKie J, Cox BF, Polakowski J, Reinhart G, Williams M, Jarvis MF (2000) ABT-702 (4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin- 3-yl)pyrido[2,3-d]pyrimidine), a novel orally effective adenosine kinase inhibitor with analgesic and anti-inflammatory properties. II. In vivo characterization in the rat. J Pharmacol Exp Ther 295:1165–1174PubMedGoogle Scholar
  30. Kuno M, Seki N, Tsujimoto S, Nakanishi I, Kinoshita T, Nakamura K, Terasaka T, Nishio N, Sato A, Fujii T (2006) Anti-inflammatory activity of non-nucleoside adenosine deaminase inhibitor FR234938. Eur J Pharmacol 534:241–249PubMedCrossRefGoogle Scholar
  31. Lappas CM, Sullivan GW, Linden J (2005) Adenosine A2A agonists in development for the treatment of inflammation. Expert Opin Investig Drugs 14:797–806PubMedCrossRefGoogle Scholar
  32. Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388:674–678PubMedCrossRefGoogle Scholar
  33. Li X, Conklin D, Ma W, Zhu X, Eisenach JC (2002) Spinal noradrenergic activation mediates allodynia reduction from an allosteric adenosine modulator in a rat model of neuropathic pain. Pain 97:117–125PubMedCrossRefGoogle Scholar
  34. Linden J (2001) Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol 41:775–787PubMedCrossRefGoogle Scholar
  35. Livingston M, Heaney LG, Ennis M (2004) Adenosine, inflammation and asthma—a review. Inflamm Res 53:171–178PubMedCrossRefGoogle Scholar
  36. Lukashev D, Ohta A, Apasov S, Chen JF, Sitkovsky M (2004) Cutting edge: Physiologic attenuation of proinflammatory transcription by the Gs protein-coupled A2A adenosine receptor in vivo. J Immunol 173:21–24PubMedGoogle Scholar
  37. Marx D, Ezeamuzie CI, Nieber K, Szelenyi I (2001) Therapy of bronchial asthma with adenosine receptor agonists or antagonists. Drug News Perspect 14:89–100PubMedGoogle Scholar
  38. McGaraughty S, Cowart M, Jarvis MF (2001) Recent developments in the discovery of novel adenosine kinase inhibitors: mechanism of action and therapeutic potential. CNS Drug Rev 7:415–432PubMedCrossRefGoogle Scholar
  39. McGaraughty S, Cowart M, Jarvis MF, Berman RF (2005) Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr Top Med Chem 5:43–58PubMedCrossRefGoogle Scholar
  40. Muller CE (2003) Medicinal chemistry of adenosine A3 receptor ligands. Curr Top Med Chem 3:445–462PubMedCrossRefGoogle Scholar
  41. Muller CE, Ferre S (2007) Blocking striatal adenosine A2A receptors: a new strategy for basal ganglia disorders. Rec Patents CNS Drug Discov 2:1–21Google Scholar
  42. Mustafa SJ, Nadeem A, Fan M, Zhong H, Belardinelli L, Zeng D (2007) Effect of a specific and selective A(2B) adenosine receptor antagonist on adenosine agonist AMP and allergen-induced airway responsiveness and cellular influx in a mouse model of asthma. J Pharmacol Exp Ther 320:1246–1251PubMedCrossRefGoogle Scholar
  43. Nadeem A, Obiefuna PC, Wilson CN, Mustafa SJ (2006) Adenosine A1 receptor antagonist versus montelukast on airway reactivity and inflammation. Eur J Pharmacol 551:116–124PubMedCrossRefGoogle Scholar
  44. Nadeem A, Fan M, Ansari HR, Ledent C, Mustafa SJ (2007) Enhanced airway reactivity and inflammation in A2A adenosine receptor deficient allergic mice. Am J Physiol Lung Cell Mol Physiol 292(6):L1335–L1344PubMedCrossRefGoogle Scholar
  45. Nakamura I, Ohta Y, Kemmotsu O (1997) Characterization of adenosine receptors mediating spinal sensory transmission related to nociceptive information in the rat. Anesthesiology 87:577–584PubMedCrossRefGoogle Scholar
  46. Odashima M, Bamias G, Rivera-Nieves J, Linden J, Nast CC, Moskaluk CA, Marini M, Sugawara K, Kozaiwa K, Otaka M, Watanabe S, Cominelli F (2005) Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 129:26–33PubMedCrossRefGoogle Scholar
  47. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920PubMedCrossRefGoogle Scholar
  48. Ongini E, Fredholm BB (1996) Pharmacology of adenosine A2A receptors. Trends Pharmacol Sci 17:364–372PubMedCrossRefGoogle Scholar
  49. Ozola V, Thorand M, Diekmann M, Qurishi R, Schumacher B, Jacobson KA, Müller CE (2003) 2-Phenylimidazo[2,1-i]purin-5-ones: structure–activity relationships and characterization of potent and selective inverse agonists at human A3 adenosine receptors. Bioorg Med Chem 11:347–356PubMedCrossRefGoogle Scholar
  50. Poon A, Sawynok J (1998) Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 74:235–245PubMedCrossRefGoogle Scholar
  51. Poon A, Sawynok J (1999) Antinociceptive and anti-inflammatory properties of an adenosine kinase inhibitor and an adenosine deaminase inhibitor. Eur J Pharmacol 384:123–138PubMedCrossRefGoogle Scholar
  52. Posadas I, Bucci M, Roviezzo F, Rossi A, Parente L, Sautebin L, Cirino G (2004) Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. Br J Pharmacol 142:331–338PubMedCrossRefGoogle Scholar
  53. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492PubMedGoogle Scholar
  54. Ramkumar V, Stiles GL, Beaven MA, Ali H (1993) The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem 268:16887–16890PubMedGoogle Scholar
  55. Ramkumar V, Hallam DM, Nie Z (2001) Adenosine, oxidative stress and cytoprotection. Jpn J Pharmacol 86:265–274PubMedCrossRefGoogle Scholar
  56. Ramos-Zepeda G, Schroder W, Rosenow S, Herrero JF (2004) Spinal vs. supraspinal antinociceptive activity of the adenosine A(1) receptor agonist cyclopentyl-adenosine in rats with inflammation. Eur J Pharmacol 499:247–256PubMedCrossRefGoogle Scholar
  57. Reeve AJ, Dickenson AH (1995) The roles of spinal adenosine receptors in the control of acute and more persistent nociceptive responses of dorsal horn neurones in the anaesthetized rat. Br J Pharmacol 116:2221–2228PubMedGoogle Scholar
  58. Rosi S, McGann K, Hauss-Wegrzyniak B, Wenk GL (2003) The influence of brain inflammation upon neuronal adenosine A2B receptors. J Neurochem 86:220–227PubMedCrossRefGoogle Scholar
  59. Ryzhov SV, Zaynagetdinov R, Goldstein AE, Novitskiy SV, Blackburn MR, Biaggioni I, Feoktistov I (2007) Effect of A2B adenosine receptor gene ablation on adenosine-dependent regulation of pro-inflammatory cytokines. J Pharmacol Exp Ther (in press)Google Scholar
  60. Salmon JE, Cronstein BN (1990) Fc gamma receptor-mediated functions in neutrophils are modulated by adenosine receptor occupancy. A1 receptors are stimulatory and A2 receptors are inhibitory. J Immunol 145:2235–2240PubMedGoogle Scholar
  61. Sawynok J (1998) Adenosine receptor activation and nociception. Eur J Pharmacol 347:1–11PubMedCrossRefGoogle Scholar
  62. Sawynok J, Zarrindast MR, Reid AR, Doak GJ (1997) Adenosine A3 receptor activation produces nociceptive behaviour and edema by release of histamine and 5-hydroxytryptamine. Eur J Pharmacol 333:1–7PubMedCrossRefGoogle Scholar
  63. Sawynok J, Reid A, Liu XJ (1999) Acute paw oedema induced by local injection of adenosine A(1), A(2) and A(3) receptor agonists. Eur J Pharmacol 386:253–261PubMedCrossRefGoogle Scholar
  64. Sawynok J, Reid A, Liu XJ (2000) Involvement of mast cells, sensory afferents and sympathetic mechanisms in paw oedema induced by adenosine A(1) and A(2B/3) receptor agonists. Eur J Pharmacol 395:47–50PubMedCrossRefGoogle Scholar
  65. Sullivan GW (2003) Adenosine A2A receptor agonists as anti-inflammatory agents. Curr Opin Investig Drugs 4:1313–1319PubMedGoogle Scholar
  66. Sun CX, Zhong H, Mohsenin A, Morschl E, Chunn JL, Molina JG, Belardinelli L, Zeng D, Blackburn MR (2006) Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury. J Clin Invest 116:2173–2182PubMedCrossRefGoogle Scholar
  67. Terai T, Kusunoki T, Kita Y, Yoshida K, Akahane A, Shiokawa Y, Kohno Y, Horiai H, Mori J, Mine Y, Kohsaka M (1996) General pharmacology of the new non-xanthine adenosine A1 receptor antagonist (+)-(R)-[(E)-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)acryloyl]-2-piperidine ethanol. Arzneimittelforschung 46:185–191PubMedGoogle Scholar
  68. Thiel M, Caldwell CC, Sitkovsky MV (2003) The critical role of adenosine A2A receptors in downregulation of inflammation and immunity in the pathogenesis of infectious diseases. Microbes Infect 5:515–526PubMedCrossRefGoogle Scholar
  69. Vinegar R, Truax JF, Selph JL (1976) Quantitative studies of the pathway to acute carrageenan inflammation. Fed Proc 35:2447–2456PubMedGoogle Scholar
  70. Weyler S, Fulle F, Diekmann M, Schumacher B, Hinz S, Klotz KN, Muller CE (2006) Improving potency, selectivity, and water solubility of adenosine A1 receptor antagonists: xanthines modified at position 3 and related pyrimido[1,2,3-cd]purinediones. ChemMedChem 1:891–902PubMedCrossRefGoogle Scholar
  71. Wu WP, Hao JX, Halldner-Henriksson L, Xu XJ, Jacobson MA, Wiesenfeld-Hallin Z, Fredholm BB (2002) Decreased inflammatory pain due to reduced carrageenan-induced inflammation in mice lacking adenosine A3 receptors. Neuroscience 114:523–527PubMedCrossRefGoogle Scholar
  72. Wu WP, Hao JX, Halldner L, Lovdahl C, DeLander GE, Wiesenfeld-Hallin Z, Fredholm BB, Xu XJ (2005) Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain 113:395–404PubMedCrossRefGoogle Scholar
  73. Yan L, Muller CE (2004) Preparation, properties, reactions, and adenosine receptor affinities of sulfophenylxanthine nitrophenyl esters: toward the development of sulfonic acid prodrugs with peroral bioavailability. J Med Chem 47:1031–1043PubMedCrossRefGoogle Scholar
  74. Yang Z, Day YJ, Toufektsian MC, Ramos SI, Marshall M, Wang XQ, French BA, Linden J (2005) Infarct-sparing effect of A2A-adenosine receptor activation is due primarily to its action on lymphocytes. Circulation 111:2190–2197PubMedCrossRefGoogle Scholar
  75. Yang D, Zhang Y, Nguyen HG, Koupenova M, Chauhan AK, Makitalo M, Jones MR, St Hilaire C, Seldin DC, Toselli P, Lamperti E, Schreiber BM, Gavras H, Wagner DD, Ravid K (2006) The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest 116:1913–1923PubMedCrossRefGoogle Scholar
  76. Yang M, Soohoo D, Soelaiman S, Kalla R, Zablocki J, Chu N, Leung K, Yao L, Diamond I, Belardinelli L, Shryock JC (2007) Characterization of the potency, selectivity, and pharmacokinetic profile for six adenosine A2A receptor antagonists. Naunyn Schmiedebergs Arch Pharmacol 375:133–144PubMedCrossRefGoogle Scholar
  77. Young HW, Molina JG, Dimina D, Zhong H, Jacobson M, Chan LN, Chan TS, Lee JJ, Blackburn MR (2004) A3 adenosine receptor signaling contributes to airway inflammation and mucus production in adenosine deaminase-deficient mice. J Immunol 173:1380–1389PubMedGoogle Scholar
  78. Zablocki J, Elzein E, Kalla R (2006) A2B adenosine receptor antagonists and their potential indications.. Exp Opin Ther Patents 16:1347–1357CrossRefGoogle Scholar
  79. Zhong H, Wu Y, Belardinelli L, Zeng D (2006) A2B adenosine receptors induce IL-19 from bronchial epithelial cells, resulting in TNF-alpha increase. Am J Respir Cell Mol Biol 35:587–592PubMedCrossRefGoogle Scholar
  80. Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci U S A 96:5780–5785PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Andras Bilkei-Gorzo
    • 1
  • Osama M. Abo-Salem
    • 1
    • 2
  • Alaa M. Hayallah
    • 3
    • 4
  • Kerstin Michel
    • 1
  • Christa E. Müller
    • 3
  • Andreas Zimmer
    • 1
  1. 1.Institute of Molecular PsychiatryUniversity of BonnBonnGermany
  2. 2.Department of Pharmacology and ToxicologyAl-Azhar UniversityCairoEgypt
  3. 3.Pharmaceutical InstituteUniversity of BonnBonnGermany
  4. 4.Faculty of PharmacyAssiut UniversityAssiutEgypt

Personalised recommendations