Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 374, Issue 1, pp 41–49 | Cite as

Induction of eryptosis by cyclosporine

  • Olivier M. Niemoeller
  • Ahmad Akel
  • Philipp A. Lang
  • Philipp Attanasio
  • Daniela S. Kempe
  • Tobias Hermle
  • Malgorzata Sobiesiak
  • Thomas Wieder
  • Florian Lang
Original Article

Abstract

Side effects of cyclosporine treatment include anemia. Most recent studies have found that anemia may be caused by triggering of suicidal erythrocyte death (eryptosis), i.e. activation of an erythrocyte scramblase and phosphatidylserine exposure at the erythrocyte surface. Phosphatidylserine exposing cells are rapidly cleared from circulating blood by phagocytosis. Stimulators of erythrocyte membrane scrambling include cytosolic Ca2+ and ceramide, which are increased by entry through Ca2+-permeable cation channels and by activation of a sphingomyelinase, respectively. The present study has been performed to test for an effect of cyclosporine on eryptosis. Erythrocytes from healthy volunteers were exposed to cyclosporine, and phosphatidylserine exposure (annexin V binding), cell volume (forward scatter), cytosolic Ca2+ activity (Fluo3-dependent fluorescence), ceramide formation (anti-ceramide-FITC antibody), and 45Ca2+ uptake were determined by flow cytometry and tracer flux measurements, respectively. Exposure of erythrocytes to cyclosporine triggered annexin V binding and significantly enhanced the increased annexin V binding both following glucose depletion and after hyperosmotic or isotonic cell shrinkage. However, cyclosporine significantly decreased cytosolic Ca2+ activity and did not stimulate 45Ca2+ uptake. Instead, cyclosporine transiently stimulated ceramide formation, decreased the cytosolic ATP concentration and potentiated the decline of cytosolic ATP concentration following glucose depletion. Elevated ceramide levels and ATP depletion, in turn, sensitize the erythrocytes for the eryptotic effects of Ca2+. The present observations may provide a mechanistic explanation for the anemia following treatment with this important immunosuppressive drug.

Keywords

Annexin V Apoptosis Calcium Ceramide Immunosuppression 

Notes

Acknowledgements

The authors acknowledge the meticulous preparation of the manuscript by Tanja Loch and Lejla Subasic. This study was supported by the Deutsche Forschungsgemeinschaft, Nr. La 315/4–3 and La 315/13–1, the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (Center for Interdisciplinary Clinical Research) 01 KS 9602, the Else-Übelmesser-Stiftung and the Biomed program of the EU (BMH4-CT96-0602). P.A. Lang. and D.S. Kempe have been supported by a stipend from the IZKF (Fö. 01KS9602).

References

  1. Akbas SH, Yurdakonar E, Yucetin L, Senol Y et al (2006) Relation of C-2 monitoring with serum lipid profile in stable renal transplant patients. Transplant Proc 38:460–462PubMedCrossRefGoogle Scholar
  2. Andree HA, Reutelingsperger CP, Hauptmann R, Hemker HC et al (1990) Binding of vascular anticoagulant alpha (VAC Alpha) to planar phospholipid bilayers. J Biol Chem 265:4923–4928PubMedGoogle Scholar
  3. Andrews DA, Low PS (1999) Role of red blood cells in thrombosis. Curr Opin Hematol 6:76–82PubMedCrossRefGoogle Scholar
  4. Arese P, Turrini F, Schwarzer E (2005) Band 3/complement-mediated recognition and removal of normally senescent and pathological human erythrocytes. Cell Physiol Biochem 16:133–146PubMedCrossRefGoogle Scholar
  5. Barvitenko NN, Adragna NC, Weber RE (2005) Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance. Cell Physiol Biochem 15:1–18PubMedCrossRefGoogle Scholar
  6. Boas FE, Forman L, Beutler E (1998) Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia. Proc Natl Acad Sci USA 95:3077–3081PubMedCrossRefGoogle Scholar
  7. Bosman GJ, Willekens FL, Werre JM (2005) Erythrocyte aging: a more than superficial resemblance to apoptosis? Cell Physiol Biochem 16:1–8PubMedCrossRefGoogle Scholar
  8. Closse C, Dachary-Prigent J, Boisseau MR (1999) Phosphatidylserine-related adhesion of human erythrocytes to vascular endothelium. Br J Haematol 107:300–302PubMedCrossRefGoogle Scholar
  9. Corrigan JJ Jr, Boineau FG (2001) Hemolytic-uremic syndrome. Pediatr Rev 22:365–369PubMedGoogle Scholar
  10. Dlott JS, Danielson CF, Blue-Hnidy DE, McCarthy LJ (2004) Drug-induced thrombotic thrombocytopenic purpura/hemolytic uremic syndrome: a concise review. Therap Apher Dial 8:102–111CrossRefGoogle Scholar
  11. Fadok VA, Bratton DL, Rose DM, Pearson A et al (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90PubMedCrossRefGoogle Scholar
  12. Kaplan B, Meier-Kriesche HU, Napoli KL, Kahan BD (1998) The effects of relative timing of sirolimus and cyclosporine microemulsion formulation coadministration on the pharmacokinetics of each agent. Clin Pharmacol Ther 63:48–53PubMedCrossRefGoogle Scholar
  13. Kempe DS, Lang PA, Duranton C, Akel A et al (2006) Enhanced programmed cell death of iron-deficient erythrocytes. FASEB J 20:368–370PubMedGoogle Scholar
  14. Klarl BA, Lang PA, Kempe DS, Niemoeller OM et al (2006) Protein kinase C mediates erythrocyte “programmed cell death” following glucose depletion. Am J Physiol Cell Physiol 290:C244–C253PubMedCrossRefGoogle Scholar
  15. Kruger M, Schwaninger M, Blume R, Oetjen E et al (1997) Inhibition of CREB- and CAMP response element-mediated gene transcription by the immunosuppressive drugs cyclosporin A and FK506 in T cells. Naunyn Schmiedebergs Arch Pharmacol 356:433–440PubMedCrossRefGoogle Scholar
  16. Lang KS, Duranton C, Poehlmann H, Myssina S et al (2003a) Cation channels trigger apoptotic death of erythorcytes. Cell Death Differ 10:249–256PubMedCrossRefGoogle Scholar
  17. Lang KS, Myssina S, Tanneur V, Wieder T et al (2003b) Inhibition of erythrocyte cation channels and apoptosis by ethylisopropylamiloride. Naunyn Schmiedebergs Arch Pharmacol 367:391–396PubMedCrossRefGoogle Scholar
  18. Lang KS, Myssina S, Brand V, Sandu C et al (2004a) Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes. Cell Death Differ 11:231–243PubMedCrossRefGoogle Scholar
  19. Lang KS, Myssina S, Lang PA, Tanneur V et al (2004b) Inhibition of erythrocyte phosphatidylserine exposure by urea and Cl−. Am J Physiol Renal Physiol 286:F1046–F1053PubMedCrossRefGoogle Scholar
  20. Lang KS, Lang PA, Bauer C, Duranton C et al (2005) Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem 15:195–202PubMedCrossRefGoogle Scholar
  21. Lang PA, Kaiser S, Myssina S, Wieder T et al (2003) Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am J Physiol Cell Physiol 285:C1553–C1560PubMedGoogle Scholar
  22. Lang PA, Kempe DS, Akel A, Klarl BA et al (2005a) Inhibition of erythrocyte “apoptosis” by catecholamines. Naunyn Schmiedebergs Arch Pharmacol 372:228–235PubMedCrossRefGoogle Scholar
  23. Lang PA, Kempe DS, Myssina S, Tanneur V et al (2005b) PGE(2) in the regulation of programmed erythrocyte death. Cell Death Differ 12:415–428PubMedCrossRefGoogle Scholar
  24. Lang PA, Beringer O, Nicolay JP, Amon O et al (2006) Suicidal death of erythrocytes in recurrent hemolytic uremic syndrome. J Mol Med 84:378–388PubMedCrossRefGoogle Scholar
  25. Lin CC, King KL, Chao YW, Yang AH et al (2003) Tacrolimus-associated hemolytic uremic syndrome: a case analysis. J Nephrol 16:580–585PubMedGoogle Scholar
  26. Moake JL (2002) Thrombotic thrombocytopenic purpura and the hemolytic uremic syndrome. Arch Pathol Lab Med 126:1430–1433PubMedGoogle Scholar
  27. Myssina S, Lang PA, Kempe DS, Kaiser S et al (2004) Cl− channel blockers NPPB and niflumic acid blunt Ca(2+)-induced erythrocyte “Apoptosis”. Cell Physiol Biochem 14:241–248PubMedCrossRefGoogle Scholar
  28. Nawa Y, Hara M, Tanimoto K, Nakase K et al (2006) Single-dose daily infusion of cyclosporine for prevention of graft-versus-host disease after allogeneic bone marrow transplantation from HLA allele-matched, unrelated donors. Int J Hematol 83:159–163PubMedGoogle Scholar
  29. Oetjen E, Grapentin D, Blume R, Seeger M et al (2003) Regulation of human insulin gene transcription by the immunosuppressive drugs cyclosporin A and tacrolimus at concentrations that inhibit calcineurin activity and involving the transcription factor CREB. Naunyn Schmiedebergs Arch Pharmacol 367:227–236PubMedCrossRefGoogle Scholar
  30. Rice L, Alfrey CP (2005) The negative regulation of red cell mass by neocytolysis: physiologic and pathophysiologic manifestations. Cell Physiol Biochem 15:245–250PubMedCrossRefGoogle Scholar
  31. Thurnher D, Kletzmayr J, Formanek M, Quint C et al (2001) Chemotherapy-related hemolytic-uremic syndrome following treatment of a carcinoma of the nasopharynx. Oncology 61:143–146PubMedCrossRefGoogle Scholar
  32. Woon LA, Holland JW, Kable EP, Roufogalis BD (1999) Ca2+ sensitivity of phospholipid scrambling in human red cell ghosts. Cell Calcium 25:313–320PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Olivier M. Niemoeller
    • 1
  • Ahmad Akel
    • 1
  • Philipp A. Lang
    • 1
  • Philipp Attanasio
    • 1
  • Daniela S. Kempe
    • 1
  • Tobias Hermle
    • 1
  • Malgorzata Sobiesiak
    • 1
  • Thomas Wieder
    • 1
  • Florian Lang
    • 1
  1. 1.Physiologisches Institut der Universität TübingenTübingenGermany

Personalised recommendations