Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 370, Issue 5, pp 404–413

New CCK2 agonists confirming the heterogeneity of CCK2 receptors: characterisation of BBL454

  • Bruno Bellier
  • Dominique Crété
  • Marie-Emmanuelle Million
  • Françoise Beslot
  • André Bado
  • Christiane Garbay
  • Valérie Daugé
Original Article


Pharmacological studies were undertaken with a new series of cholecystokinin2 CCK2 agonists in order to assign to them a CCK2A or CCK2B pharmacological profile. The open-field test was chosen as the discrimination test of CCK2B agonists. The most interesting agonist, BBL454 (0.03–300 μg/kg) induced hyperactivity which was blocked by a CCK2 antagonist, the D1 antagonist SCH23390, the δ-opioid antagonist naltrindole, but not a CCK1 antagonist. All compounds active in the open-field test are characterised by a common structural feature, –COCH2CO–Trp-NMeNle-Asp-Phe-NH2, whereas inactive compounds do not possess such a motive. Therefore, this feature can be considered crucial for CCK2B activity. BBL454 (0.03–3 μg/kg) improved memory in a two-trial memory test while it was very weakly active on the peripheral CCK2 receptor, and did not evoke anxiogenic effects in the plus-maze test. The synthesis of BBL454 is simple, its minimal active dose is 30 ng/kg and no “bell-shaped” responses were observed. These results suggest that BBL454 could be considered to be the new CCK2B reference agonist.


CCK2B receptor agonists BBL454 Open-field Memory Locomotor activity 


  1. Bellier B (2000) Hétérogénéité fonctionnelle du récepteur CCK2 à la cholécystokinine: conception, étude de nouveaux outils pharmacologiques et perspectives thérapeutiques associées. PhD dissertation, Université Paris VGoogle Scholar
  2. Bellier B, McCort-Tranchepain I, Ducos B, Danascimento S, Meudal H, Noble F, Garbay C, Roques BP (1997) Synthesis and biological properties of new constrained CCK-B antagonists; discrimination of two affinity states of the CCK-B receptor on transfected CHO cells. J Med Chem 40:3947–3956CrossRefPubMedGoogle Scholar
  3. Bellier B, Million E, Danascimento S, Meudal H, Kellou S, Maigret B, Garbay C (2000) Replacement of glycine by derivatives of malonic acid in analogues of the C-terminal pentapeptide of cholecystokinin: CCK2 agonists displaying a novel binding mode. J Med Chem 43:3614–3623CrossRefPubMedGoogle Scholar
  4. Bellier B, Gigoux V, Garbay C (2001) Heterogeneity of cholecystokinin receptors: a new interest towards the development of CCK2 agonists. Curr Med Chem CNSA 1:209–224Google Scholar
  5. Bellier B, Dugave C, Etivant F, Gigoux V, Genet R, Garbay C (2004) Synthesis and biological characterisation of [3H]BBL454, a new CCK2 selective radiolabelled agonist displaying original pharmacological properties. Bioorg Med Chem Lett 14:369–372CrossRefPubMedGoogle Scholar
  6. Berg KA, Maayani S, Goldfarb J, Scaramellini C, Leff P, Clarke RP (1998) Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharmacol 54:94–104PubMedGoogle Scholar
  7. Blommaert AG, Dhotel H, Ducos B, Durieux C, Goudreau N, Bado A, Garbay C, Roques BP (1998) Structure-based design of new constrained cyclic agonists of the cholecystokinin CCK-B receptor. J Med Chem 40:647–658CrossRefGoogle Scholar
  8. Calenco-Choukroun G, Daugé V, Gacel G, Féger J, Roques BP (1991) Opioid δ agonists and endogenous enkephalins induce different emotional reactivity than μ agonists after injection in the rat ventral tegmental area. Psychopharmacology 103:493–503PubMedGoogle Scholar
  9. Chang RSL, Lotti VJ (1986) Characterization of an extremely potent and selective non peptide cholecystokinin antagonist. Proc Natl Acad Sci USA 83:4923–4926PubMedGoogle Scholar
  10. Charpentier B, Durieux C, Menant I, Roques BP (1987) Investigation of peripheral cholecystokinin receptor heterogeneity by cyclic and related linear analogues of CCK26–33: synthesis and biological properties. J Med Chem 30:962–968PubMedGoogle Scholar
  11. Charpentier B, Durieux C, Pélaprat D, Dor A, Reibaud M, Blanchard JC, Roques BP (1988) Enzyme-resistant CCK analogs with high affinities for central receptors. Peptides 9:835–841CrossRefPubMedGoogle Scholar
  12. Charrier D, Dangoumau L, Puech AJ, Hamon M, Thiébot MH (1995) Failure of CCK receptor ligands to modify anxiety-related behavioral suppression in an operant conflict paradigm in rats. Psychopharmacology 121:127–134PubMedGoogle Scholar
  13. Crawley J, Corwin RL (1994) Biological actions of cholecystokinin. Peptides 15:731–755CrossRefPubMedGoogle Scholar
  14. Daugé V, Léna I (1998) CCK in anxiety and cognitive processes. Neurosci Biobehav Rev 22:815–825CrossRefPubMedGoogle Scholar
  15. Daugé V, Dor A, Féger J, Roques BP (1989) The behavioral effects of the CCK8 injected into the medial nucleus accumbens are dependent on the motivational states of the rats. Eur J Pharmacol 163:25–32Google Scholar
  16. Daugé V, Samir A, Cupo A, Roques BP (1999) Peripheral stimulation of CCK-B receptors by BC264 induces a hyperexploration, dependent on the delta opioid system in the nucleus accumbens of rat. Neuropharmacology 38:999–1007CrossRefPubMedGoogle Scholar
  17. Dellu F, Mayo W, Cherkaoui J, LeMoal M, Simon H (1992) A two trial memory task with automated recording: study in young and aged rats. Brain Res 588:132–139CrossRefPubMedGoogle Scholar
  18. Dellu F, Fauchey V, LeMoal M, Simon H (1997) Extension of a new two-trial memory task in the rat: influence of environmental context on recognition processes. Neurobiol Learn Mem 67:112–120CrossRefPubMedGoogle Scholar
  19. Derrien M, McCort-Tranchepain I, Ducos B, Roques BP, Durieux C (1994) Heterogeneity of CCK-B receptors involved in animal models of anxiety. Pharmacol Biochem Behav 49:133–141CrossRefPubMedGoogle Scholar
  20. Dourish CT, Hawley D, Iversen SD (1988) Enhancement of morphine analgesia and prevention of morphine tolerance in the rat by the cholecystokinin antagonist L364,718. Eur J Pharmacol 147:469–472CrossRefPubMedGoogle Scholar
  21. Dubreuil P, Fulcrand P, Rodriguez M, Laur J, Bali JP, Martinez J (1990) ACE-like hydrolysis of gastrin analogs and CCK-8 by fundic mucosal cells of different species with release of the amidated C-terminal dipeptide. Biochim Biophys Acta 1039:171–176CrossRefPubMedGoogle Scholar
  22. Durieux C, Coppey M, Zajac JM, Roques BP (1986) Occurrence of two cholecystokinin binding sites in guinea-pig brain cortex. Biochem Biophys Res Commun 137:1167–1173PubMedGoogle Scholar
  23. Harper EA, Roberts SP, Shankley NP, Black JW (1996) Analysis of variation in L-365,260 competition curves in radioligand binding assays. Br J Pharmacol 118:1717–1726PubMedGoogle Scholar
  24. Harper EA, Griffin EP, Shankley NP, Black JW (1999) Analysis of the behaviour of selected CCKB/gastrin receptor antagonists in radioligand binding assays performed in mouse and rat cerebral cortex. Br J Pharmacol 126:1496–1503PubMedGoogle Scholar
  25. Huang SC, Fortune KP, Wank SA, Kopin AS, Gardner JD (1994) Multiple affinity states of different cholecystokinin receptors. J Biol Chem 269:26121–26126PubMedGoogle Scholar
  26. Hughes J, Boden P, Costall B, Domeney A, Kelly E, Horwell DC, Hunter JC, Pinnock R, Woodruff GN (1990) Development of a class of selective cholecystokinin type B receptor antagonists having potent anxiolytic activity. Proc Natl Acad Sci USA 87:6728–6732PubMedGoogle Scholar
  27. Kenakin T (1995) Agonist-receptor efficacy II: agonist trafficking of receptor signals. Trends Pharmacol Sci 17:190–191CrossRefGoogle Scholar
  28. Knapp RJ, Vaughn LK, Fang SN, Bogert CL, Yamamura MS, Hruby VJ, Yamamura HI (1990) A new, highly selective CCK-B receptor radioligand ([3H] [N-methyl-Nle28,31]CCK26–33): evidence for CCK-B receptor heterogeneity. J Pharmacol Exp Ther 255:1278–1286PubMedGoogle Scholar
  29. Ladurelle N, Keller G, Roques BP, Daugé V (1993) Effects of CCK8 and of the CCKB-selective agonist BC264 on extracellular dopamine content in the anterior and posterior nucleus accumbens: a microdialysis study in freely moving rats. Brain Res 628:254–262CrossRefPubMedGoogle Scholar
  30. Ladurelle N, Keller G, Blommaert A, Roques BP, Daugé V (1997) The CCK-B agonist, BC264, increases dopamine in the nucleus accumbens and facilitates motivation and attention after intraperitoneal injection in rats. Eur J Neurosci 9:1804–1814Google Scholar
  31. Ladurelle N, Sebret A, Garbay C, Roques BP, Daugé V (1998) Opposite effects of CCK(B) agonists in grooming behaviour in rats: further evidence for two CCK(B) subsites. Br J Pharmacol 124:1091–1098PubMedGoogle Scholar
  32. Léna I, Roques BP, Durieux C (1997) Dual modulation of dopamine release from anterior nucleus accumbens through cholecystokinin-B receptor subsites. J Neurochem 68:162–168PubMedGoogle Scholar
  33. Léna I, Simon H, Roques BP, Daugé V (1999) Opposing effects of two CCK(B) agonists on the retrieval phase of a two-trial memory task after systemic injection in the rat. Neuropharmacology 38:543–553CrossRefPubMedGoogle Scholar
  34. Léna I, Dhotel H, Garbay C, Daugé V (2001) Involvement of D2 dopamine receptors in the opposing effects of two CCK-B agonists in a spatial recognition memory task: role of the anterior nucleus accumbens. Psychopharmacology 153:170–179CrossRefPubMedGoogle Scholar
  35. Lotti VJ, Chang RSL (1989) New potent and selective nonpeptide gastrin antagonist and brain cholecystokinin receptor (CCK-B) ligand: L365,260. Eur J Pharmacol 162:273–280CrossRefPubMedGoogle Scholar
  36. Melville LD, Smith GP, Gibbs J (1992) Devazepide antagonizes the inhibitory effect of cholecystokinin on intake in sham-feeding rats. Pharmacol Biochem Behav 43:975–977CrossRefPubMedGoogle Scholar
  37. Million ME, Léna I, Danascimento S, Noble F, Daugé V, Garbay C, Roques BP (1997) Development of new potent agonists able to interact with two postulated subsites of the cholecystokinin CCK-B receptor. Lett Pept Sci 4:407–410CrossRefGoogle Scholar
  38. Noble F, Roques BP (1999) CCK-B receptor: chemistry molecular biology, biochemistry and pharmacology. Prog Neurobiol 58:349–379CrossRefPubMedGoogle Scholar
  39. Pommier B, Danascimento S, Dumont S, Bellier B, Million E, Garbay C, Roques BP, Noble F (1999) The cholecystokininB receptor is coupled to two effector pathways through pertussis toxin-sensitive and -insensitive G proteins. J Neurochem 73:281–288CrossRefPubMedGoogle Scholar
  40. Portoghese PS, Sultana M, Takemori AE (1988) Naltrindole a highly selective and potent non peptide δ opioid receptor antagonist. Eur J Pharmacol 146:495–508CrossRefGoogle Scholar
  41. Sebret A, Léna I, Crété D, Matsui T, Roques BP, Daugé V (1999) Rat hippocampal neurons are critically involved in physiological improvement of memory processes induced by cholecystokinin-B receptor stimulation. J Neurosci 19:7230–7237PubMedGoogle Scholar
  42. Soar J, Hewson G, Leighton GE, Hill RG, Hughes J (1989) L364,718 antagonizes the cholecystokinin-induced suppression of locomotor activity. Pharmacol Biochem Behav 33:637–640CrossRefPubMedGoogle Scholar
  43. Tairi-Kellou S, Bellier B, Million ME, Garbay C, Cartier A, Maigret B (2002) Computer modelling of new pseudopeptide CCK2 agonists. J Mol Struct (Theochem) 589–590:55–66CrossRefGoogle Scholar
  44. Tsunoda Y, Yoshida H, Owyang C (1996) Structural requirements of CCK analogues to differentiate second messengers and pancreatic secretion. Am J Physiol 271:G8–G19PubMedGoogle Scholar
  45. Van Megen HJ, Westenberg HG, Den Boer JA, Kahn RS (1999) Cholecystokinin in anxiety. Eur Neuropsychopharmacol 6:263–280Google Scholar
  46. Weng JH, Bado A, Garbay C, Roques BP (1996) Novel CCK-B receptor agonists: diketopiperazine analogues derived for CCK4 bioactive conformation. Regul Pept 65:3–9CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Bruno Bellier
    • 1
    • 2
  • Dominique Crété
    • 1
  • Marie-Emmanuelle Million
    • 1
  • Françoise Beslot
    • 1
  • André Bado
    • 3
  • Christiane Garbay
    • 1
    • 4
  • Valérie Daugé
    • 1
    • 5
  1. 1.Laboratoire de Pharmacochimie Moléculaire et Structurale, Faculté des Sciences Pharmaceutiques et BiologiquesU266 INSERM, FRE 2463CNRSParis Cedex 06France
  2. 2.Section Analyse ChimiqueCentre d’études du BouchetVert le PetitFrance
  3. 3.Unité de Neuroendocrinologie et Biologie Cellulaire digestives, Faculté de Médecine Xavier BichatU410 INSERMParis Cedex 18France
  4. 4.Laboratoire de Pharmacochimie Moléculaire et Cellulaire, Biomédicale des Saints PèresU648 INSERM, FRE 2718 CNRS-UFRParis Cedex 06France
  5. 5.Neurobiologie et Psychiatrie, Faculté de MédecineU513 INSERM, CHU Henri MondorCreteilFrance

Personalised recommendations