Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 368, Issue 6, pp 528–537 | Cite as

Pharmacological profile of the cyclic nociceptin/orphanin FQ analogues c[Cys10,14]N/OFQ(1–14)NH2 and c[Nphe1,Cys10,14]N/OFQ(1–14)NH2

  • M. Kitayama
  • T. A. Barnes
  • G. Carra
  • J. McDonald
  • G. Calo
  • R. Guerrini
  • D. J. Rowbotham
  • G. Smith
  • D. G. Lambert
Original Article

Abstract

In this study we describe the activity of two cyclic nociceptin/orphanin FQ (N/OFQ) peptides; c[Cys10,14]N/OFQ(1–14)NH2 (c[Cys10,14]) and its [Nphe1] derivative c[Nphe1,Cys10,14]N/OFQ(1–14)NH2 (c[Nphe1,Cys10,14]) in native rat and mouse and recombinant human N/OFQ receptors (NOP). Cyclisation may protect the peptide from metabolic degradation.

In competition binding studies of rat, mouse and human NOP the following rank order pKi was obtained: N/OFQ(1–13)NH2(reference agonist)>N/OFQ=c[Cys10,14]>>c[Nphe1Cys10,14]. In GTPγ35S studies of Chinese hamster ovary cells expressing human NOP (CHOhNOP) c[Cys10,14] (pEC50 8.29) and N/OFQ(1–13)NH2 (pEC50 8.57) were full agonists whilst c[Nphe1Cys10,14] alone was inactive. Following 30 min pre-incubation c[Nphe1Cys10,14] competitively antagonised the effects of N/OFQ(1–13)NH2 with a pA2 and slope factor of 6.92 and 1.01 respectively. In cAMP assays c[Cys10,14] (pEC50 9.29, Emax 102% inhibition of the forskolin stimulated response), N/OFQ(1–13)NH2 (pEC50 10.16, Emax 103% inhibition) and c[Nphe1Cys10,14] (~80% inhibition at 10 μM) displayed agonist activity. In the mouse vas deferens c[Cys10,14] (pEC50 6.82, Emax 89% inhibition of electrically evoked contractions) and N/OFQ(1–13)NH2 (pEC50 7.47, Emax 93% inhibition) were full agonists whilst c[Nphe1Cys10,14] alone was inactive. c[Nphe1Cys10,14] (10 μM) competitively antagonised the effects of N/OFQ(1–13)NH2 with a pKB of 5.66. In a crude attempt to assess metabolic stability, c[Cys10,14] was incubated with rat brain membranes and then the supernatant assayed for remaining peptide. Following 60 min incubation 64% of the 1 nM added peptide was metabolised (compared with 54% for N/OFQ-NH2).

In summary, we report that c[Cys10,14] is a full agonist with a small reduction in potency but no improvement in stability whilst c[Nphe1Cys10,14] displays tissue (antagonist in the vas deferens) and assay (antagonist in the GTPγ35S assay and agonist in cAMP assay) dependent activity.

Keywords

Nociceptin/orphanin FQ (N/OFQ) Cyclic N/OFQ peptides N/OFQ receptor Radioligand binding GTPγ35S binding cAMP formation Electrically stimulated vas deferens 

Notes

Acknowledgement

The authors would like to thank the International Association for the Study of Pain for provision of a collaborative travel grant between Leicester (UK) and Ferrara (Italy).

References

  1. Albrecht E, Samovilova NN, Oswald S, Baeger I, Berger H (1998) Nociceptin (orphanin FQ): high-affinity and high-capacity binding site coupled to low-potency stimulation of guanylyl-5’-O-(gamma-thio)-triphosphate binding in rat brain membranes. J Pharmacol Exp Ther 286:896–902PubMedGoogle Scholar
  2. Ambo A, Hamazaki N, Yamada Y, Nakata E, Sasaki Y (2001) Structure-activity studies on nociceptin analogues: ORL1 receptor binding and biological activity of cyclic disulfide-containing analogues of nociceptin peptides. J Med Chem 44:4015–4018CrossRefPubMedGoogle Scholar
  3. Annis I, Hargittai B, Barany G (1997) Disulfide bond formation in peptides. Methods Enzymol 289:198–221PubMedGoogle Scholar
  4. Bigoni R, Giuliani S, Calo G, Rizzi A, Guerrini R, Salvadori S, Regoli D, Maggi CA (1999) Characterization of nociceptin receptors in the periphery: in vitro and in vivo studies. Naunyn-Schmiedebergs Arch Pharmacol 359:160–167Google Scholar
  5. Bigoni R, Cao G, Rizzi A, Okawa H, Regoli D, Smart D, Lambert DG (2002) Effects of naloxone benzoylhydrazone on native and recombinant nociceptin/orphanin FQ receptors. Can J Physiol Pharmacol 80:407–412CrossRefPubMedGoogle Scholar
  6. Calo G, Rizzi A, Bogoni G, Neugebauer V, Salvadori S, Guerrini R, Bianchi C, Regoli D (1996) The mouse vas deferens: a pharmacological preparation sensitive to nociceptin. Eur J Pharmacol 311:R3–R5PubMedGoogle Scholar
  7. Calo G, Bigoni R, Rizzi A, Guerrini R, Salvadori S, Regoli D (2000a) Nociceptin/orphanin FQ receptor ligands. Peptides 21:935–947PubMedGoogle Scholar
  8. Calo G, Guerrini R, Bigoni R, Rizzi A, Marzola G, Okawa H, Bianchi C, Lambert DG, Salvadori S, Regoli D (2000b) Characterization of [Nphe1]nociceptin(1–13)NH2, a new selective nociceptin receptor antagonist. Br J Pharmacol 129:1183–1193PubMedGoogle Scholar
  9. Calo G, Guerrini R, Rizzi A, Salvadori S, Regoli D (2000c) Pharmacology of nociceptin and its receptor: a novel therapeutic target. Br J Pharmacol 129:1261–1283PubMedGoogle Scholar
  10. Calo G, Rizzi A, Rizzi D, Bigoni R, Guerrini R, Marzola G, Marti M, McDonald J, Morari M, Lambert DG, Salvadori S, Regoli D (2002) [Nphe1,Arg14,Lys15]Nociceptin-NH2, a novel potent and selective antagonist of the nociceptin/orphanin FQ receptor. Br J Pharmacol 136:303–311PubMedGoogle Scholar
  11. Dooley CT, Houghten RA (2000) Orphanin FQ/nociceptin receptor binding studies. Peptides 21:949–960CrossRefPubMedGoogle Scholar
  12. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77Google Scholar
  13. Guerrini R, Calo G, Rizzi A, Bianchi C, Lazarus LH, Salvadori S, Temussi PA, Regoli D (1997) Address and message sequences for the nociceptin receptor: a structure-activity study of nociceptin-(1–13)-peptide amide. J Med Chem 40:1789–1793PubMedGoogle Scholar
  14. Guerrini R, Calo G, Rizzi A, Bigoni R, Rizzi D, Regoli D, Salvadori S (2000) Structure-activity relationships of nociceptin and related peptides: comparison with dynorphin A. Peptides 21:923–933CrossRefPubMedGoogle Scholar
  15. Hashiba E, Harrison C, Calo G, Guerrini R, Rowbotham DJ, Smith G, Lambert DG (2001) Characterisation and comparison of novel ligands for the nociceptin/orphanin FQ receptor. Naunyn-Schmiedebergs Arch Pharmacol 363:28–33Google Scholar
  16. Hashiba E, Lambert DG, Farkas J, Toth G, Smith G (2002a) Comparison of the binding of [(3)H]nociceptin/orphaninFQ(1–13)NH(2), [(3)H]nociceptin/orphaninFQ(1–17)OH and [(125)I]Tyr(14)nociceptin/orphaninFQ(1–17)OH to recombinant human and native rat cerebrocortical nociceptin/orphanin FQ receptors. Neurosci Lett 328:5–8CrossRefPubMedGoogle Scholar
  17. Hashiba E, Lambert DG, Jenck F, Wichmann J, Smith G (2002b) Characterisation of the non-peptide nociceptin receptor agonist, Ro64–6198 in Chinese hamster ovary cells expressing recombinant human nociceptin receptors. Life Sci 70:1719–1725Google Scholar
  18. Kenakin T (2002) Drug efficacy at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 42:349–379Google Scholar
  19. Knoflach F, Reinscheid RK, Civelli O, Kemp JA (1996) Modulation of voltage-gated calcium channels by orphanin FQ in freshly dissociated hippocampal neurons. J Neurosci 16:6657–6664PubMedGoogle Scholar
  20. Kramer TH, Toth G, Haaseth RC, Matsunaga TO, Davis P, Hruby VJ, Burks TF (1991) Influence of peptidase inhibitors on the apparent agonist potency of delta selective opioid peptides in vitro. Life Sci 48:881–886CrossRefPubMedGoogle Scholar
  21. McDonald J, Barnes TA, Calo G, Guerrini R, Rowbotham DJ, Lambert DG (2002) Effects of [(pF)Phe(4)]nociceptin/orphanin FQ-(1–13)NH(2) on GTPgamma35S binding and cAMP formation in Chinese hamster ovary cells expressing the human nociceptin/orphanin FQ receptor. Eur J Pharmacol 443:7–12CrossRefPubMedGoogle Scholar
  22. McDonald J, Calo G, Guerrini R, Lambert DG (2003a) UFP-101, a high affinity antagonist for the nociceptin/orphanin FQ receptor: radioligand and GTPgamma(35)S binding studies. Naunyn-Schmiedebergs Arch Pharmacol 367:183–187Google Scholar
  23. McDonald J, Barnes TA, Okawa H, Williams J, Calo G, Rowbotham DJ, Lambert DG (2003b) Partial agonist behaviour depends upon the level of nociceptin/orphanin FQ receptor expression. Studies using the ecdysone inducible mammalian expression system. Br J Pharmacol 140:61–70Google Scholar
  24. Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monsarrat B et al (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–535PubMedGoogle Scholar
  25. Mogil JS, Pasternak GW (2001) The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol Rev 53:381–415PubMedGoogle Scholar
  26. Okada K, Sujaku T, Chuman Y, Nakashima R, Nose T, Costa T, Yamada Y, Yokoyama M, Nagahisa A, Shimohigashi Y (2000) Highly potent nociceptin analog containing the Arg-Lys triple repeat. Biochem Biophys Res Commun 278:493–498PubMedGoogle Scholar
  27. Okawa H, Hirst RA, Smart D, McKnight AT, Lambert DG (1998) Rat central ORL-1 receptor uncouples from adenylyl cyclase during membrane preparation. Neurosci Lett 246:49–52CrossRefPubMedGoogle Scholar
  28. Okawa H, Nicol B, Bigoni R, Hirst RA, Calo G, Guerrini R, Rowbotham DJ, Smart D, McKnight AT, Lambert DG (1999) Comparison of the effects of [Phe1psi(CH2-NH)Gly2]nociceptin(1–13)NH2 in rat brain, rat vas deferens and CHO cells expressing recombinant human nociceptin receptors. Br J Pharmacol 127:123–130PubMedGoogle Scholar
  29. Paterlini G, Portoghese PS, Ferguson DM (1997) Molecular simulation of dynorphin A-(1–10) binding to extracellular loop 2 of the kappa-opioid receptor. A model for receptor activation. J Med Chem 40:3254–3262CrossRefPubMedGoogle Scholar
  30. Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma Jr FJ, Civelli O (1995) Orphanin FQ: a neuropeptide that activates an opioid-like G protein-coupled receptor. Science 270:792–794PubMedGoogle Scholar
  31. Terenius L, Sandin J, Sakurada T (2000) Nociceptin/orphanin FQ metabolism and bioactive metabolites. Peptides 21:919–922CrossRefPubMedGoogle Scholar
  32. Topham CM, Mouledous L, Poda G, Maigret B, Meunier JC (1998) Molecular modelling of the ORL1 receptor and its complex with nociceptin. Protein Eng 11:1163–1179CrossRefPubMedGoogle Scholar
  33. Vaughan CW, Christie MJ (1996) Increase by the ORL1 receptor (opioid receptor-like1) ligand, nociceptin, of inwardly rectifying K conductance in dorsal raphe nucleus neurones. Br J Pharmacol 117:1609–1611PubMedGoogle Scholar
  34. Zhang C, Miller W, Valenzano KJ, Kyle DJ (2002) Novel, potent ORL-1 receptor agonist peptides containing alpha-Helix-promoting conformational constraints. J Med Chem 45:5280–5286CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. Kitayama
    • 1
  • T. A. Barnes
    • 1
  • G. Carra
    • 2
  • J. McDonald
    • 1
  • G. Calo
    • 2
  • R. Guerrini
    • 3
  • D. J. Rowbotham
    • 1
  • G. Smith
    • 1
  • D. G. Lambert
    • 1
  1. 1.University Department of Anaesthesia, Critical Care and Pain ManagementLeicester Royal InfirmaryLeicesterUK
  2. 2.Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience CentreUniversity of FerraraFerraraItaly
  3. 3.Department of Pharmaceutical SciencesUniversity of FerraraFerraraItaly

Personalised recommendations